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Abstract In hazardous environments, the deployment of 
robotic arms that can withstand failures without compromising 
task performance is crucial. This paper focuses on enhancing the 
fault tolerance of robotic arms, specifically addressing free-
swinging failures, which have been less explored compared to 
locked-joint failures in prior studies. To mitigate the impact of 
free-swinging failures, a novel fault-tolerance structure is 
proposed, incorporating artificial tendons (elastic strings) along 
both sides of the robotic arm segments. These artificial tendons are 
designed to generate torques at the joints in the event of a failure, 
enabling the robotic arm to retain its ability to move within certain 
regions of the workspace, defined as the fault-tolerant workspace 
(FTWS). Comparative analysis in both planar and spatial 
scenarios demonstrates that the robotic arm equipped with 
artificial tendons exhibits a significantly larger FTWS than one 
relying solely on locking the failed joint, provided that a free-
swinging failure is detected. The findings from this research 
present innovative avenues for the design and development of 
fault-tolerant robotic arms.  

Keywords fault tolerance, free-swinging failure, artificial 
tendon, robotic arm  

I. INTRODUCTION  

Robots find applications in diverse fields such as medicine  
[1], outer space [2], deep-sea exploration [3], nuclear industries 
[4], and other unstructured or hazardous environments, where 
their usage mitigates human exposure to danger. Despite their 
crucial role, robots operating in severe conditions often 
experience high failure rates, leading to a substantial reduction 
in availability, plummeting to as low as 50% [5], [6]. The 
development of fault-tolerant robotic arms, capable of 
performing tasks even in the presence of component failures, is 
of significant practical interest.  

Joint failures of robotic arms typically manifest in two main 
forms: locked-joint failure and free-swinging failure [7]. 
Locked-joint failures, caused by issues such as motor brakes and 
transmission mechanism jamming, can be actively induced to 
isolate the impact of faults [8]. Current research on fault-tolerant 
robotic arms predominantly focuses on addressing locked-joint 
failures, emphasizing model reconstruction [9], fault-tolerant 
performance evaluation [10], and fault-tolerant motion planning 
[11]. In addition, high-frequency excitation and a failed motor 
can lead to free-swinging failure [12], [13]. Recovery methods 

for free-swinging failures often involve locking the joints, 
converting them into locked-joint faults [14]. In scenarios where 
the free-swinging failure joint remains unlocked, external forces, 
such as gravity, are required to make the pose of the robotic arm 
predictable [15]. 

A commonly used measure of fault tolerance of a robotic 
arm is the size of its fault-tolerant workspace (FTWS). The first-
order FTWS is defined as the intersection of positions reachable 
by the end effector under any single joint failure [16]. For 
robotic arms with locked-joints failure, where the angle of the 
failure joint is unknown, it becomes imperative to consider the 
all angles at which the failure joint may be locked. Previous 
studies showed that a planar robotic arm needs 4 joints to ensure 
non-zero FTWS [16]. In contrast, for free-swinging robotic arms, 
the failure joint can continue moving after the failure, relying on 
external force and torque. Over time, the failure joint reaches a 
stable angle where the actuator torque becomes zero, serving as 
a parameter for calculating the FTWS [17]. The gravity is 
considered as an external force in [17], where the zero-torque 
inverse kinematics problem for a three-link planar robotic arm 
is solved and the FTWS of a planar region symmetric along the 
direction of gravity is derived. This distinction in calculation 
methods allows a nuanced evaluation of fault tolerance in the 
presence of different failure modes. 

Given the limited research on free-swinging failures and the 
associated control challenges, this paper introduces a novel 
approach to address this issue. Specifically, it proposes the 
incorporation of new components, artificial tendons, to mitigate 
the challenges associated with free-swinging failures. Tendons, 
recognized for their role in transmitting force and maintaining 
joint stability in animals [18], serve as inspiration for the 
application of artificial tendons in robotics. Previous studies 
have demonstrated the potential of artificial tendons to facilitate 
joint movement and conserve energy in robot snakes and fish 
[19], [20]. Here, we show that the transmission of forces by 
artificial tendons can also be utilized to improve fault tolerance. 
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The structure of this paper is organized as follows: Section 
II introduces the design of fault-tolerant robotic arms,
encompassing the design for artificial tendons, parameter 
settings, and the solution of the model. Section III presents 
results on the FTWS of planar and spatial robotic arms. Finally, 
Section IV concludes the paper by summarizing the key findings.

II. MODEL AND SOLUTION

A. Design

We introduce the incorporation of retaining rings and elastic 
strings on both sides of the robotic arm (see Fig. 1). The ends of 
the strings are fixed on the base and the last arm but are free to 
slide through the rings on the middle arms. These additions aim 
to control the movement of the failure joint through the tension 
and torque from the strings, which is determined by the motion 
of other active joints. This approach promotes the control of the 
passive joint, consequently enabling the end effector of the 
robotic arm reach its desired position. The inclusion of artificial 
tendons, i.e. elastic strings, enables a more versatile and stable 
control of the failure joint compared to gravity. Furthermore, 
since the joint is not actively locked, this design may provide a 
larger fault-tolerance workspace than the conventional method 
of promptly locking the joint upon detection of a fault.

Taking a planar three degree-of-freedom (DOF) robotic arm 
as example, we introduce a pair of supports on each arm for 
every joint (Fig. 1(a)). Each support is accompanied by a ring, 
and the elastic strings connect from the first pair of supports to 
the last pair, passing through rings on the middle supports, as 
illustrated in Fig. 1(b).

We note that the elastic strings employed here differ from 
the driving method used in wire-driven soft robots. In this design, 
the robotic arm remains joint-driven, and the elastic strings serve 
as auxiliary drives post-failure. Unlike wire-driven soft robots, 
there are no motors controlling the strings actively changing 
their length during the movement of the robotic arm.

For simplicity in calculations, we adopt a parameter setting 
with each arm being of equal length, denoted as . The 
distance from the small support holding the ring to the 
subsequent joint is set as . The height from the 
centerline of the arm to the ring is designated as ,
equaling to the joint radius . Introducing a pretension force 
' ' on the strings is necessary to prevent slackening of the 
elastic strings during the movement of the robotic arm. The 
magnitude of the pretension equal to the elastic coefficient times 
the stretched length of the elastic strings when all joint angles 
are 0.

B. Torque on a Failed Joint

Under normal operating conditions, the servo motor on the 
joints can generate sufficient torque to rotate the joint to the 
specified angle. In the event of a free-swinging failure in a joint, 
where the motor's torque becomes zero, the rotation of the joint
is determined by the tension acting on the ring closest to the 
failed joint (see Appendix A). For simplicity, the friction forces 
on the strings are ignored. For example, if joint 2 fails (Fig. 1(d)), 
the total torque T of the joint is the difference between the 
torques on the two strings , given by the following 
equation:

here represent the distance from the rings to the center 
of the joint. They are constant and computed as 

. Forces are on the two elastic strings, 

determined by and angles of all the joints. Angles
are between the string and , only related to the 

failure joint angle . Since the angle of the failure joint is 
0 at this time, the green string is parallel to the arm here, so we 
have , and there is a simplified equation:

We take when . Angle can be obtained by 
geometric relation:

In the case of , we take and the same equation 
can be obtained.

C. Equilibrium Angles

The joint angles at which the torque T becomes zero are 
referred to as equilibrium angles. In the scenario where a joint 
experiences failure while all other joints stop moving, the failed 
joint will settle at one of the equilibrium angles. Our analysis of 
the robotic arm's behavior post-failure is predicated on the 
assumption that the system engages in quasi-static motion after 
the fault joint angle converges to the equilibrium angles.

After establishing the method to calculate the equilibrium 
angle (T = 0), we proceed with a straightforward analysis of this 

Fig. 1. (a) A regular three-link robotic arm, with arms connected and fixed to a 
yellow base, operates within the x-y plane. (b) Fault-tolerant robotic arm with 
elastic strings. The supports are shown by the thick black lines. The green and 
red lines represent the two elastic strings. (c) The cross-sectional view of the 
ring. (d) An enlarged version of the failure joint 2.
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critical parameter. When the failure joint angle is at , both 
strings exert torques that simultaneously induce a counter-
clockwise rotation, resulting in a positive value for T. As the 
angle increases, the torques from the two strings become 
opposite, leading to a decrease in magnitude for the torque. A 
similar scenario unfolds when = . Consequently, there is an 
overall decreasing trend in the torque as a function of the angle 

, typically resulting in either one or three equilibrium angles.

For a three-joint planar robotic arm with a = 0.2, various tests 
with 1.2 tension 2.2 (e.g., 1.3, 1.4, 1.5, and 1.6) consistently 
demonstrate the aforementioned relationship. As an 
example, when tension = 1.4 and joint 3 fails with , and 
the other two joints are fixed at 0 (Fig. 2(a)), three equilibrium 
angles are evident. When the other two joints are fixed at , only 
one equilibrium angle is observed (Fig. 2(b)). Simultaneously, 
these values of tension prevent the relaxation of the elastic string. 
We choose a = 0.2, tension = 1.4 when the robotic arm is 3-DOF.

For a 2-DOF robotic arm with a = 0.2, maintaining 
0.8 ensures the non-relaxation of the elastic strings. In the range 
of 0.8 tension 2, as the active joint angle approaches 0, the 

curve exhibits similarity to Fig. 2(a), while 
approaching , the curve shape is simalar to Fig. 2(b). We select 
tension = 0.9 for 2-DOF case study.

D. Stability of the Equilibrium Angles

The equilibrium angles are classified into two types: stable 
equilibrium angles and unstable equilibrium angles. Taking the 
case shown in Fig. 2(a) as an example, the three equilibrium 
angles obtained correspond to three distinct robotic arm 
configurations (Fig. 2(c)). The first and third configurations can 
return to the original position in the case of slight perturbations, 
characterizing them as stable equilibrium angles. In contrast, the 
second configuration represents an unstable equilibrium angle. 
When three equilibrium angles exist, there must be two stable 
ones, and when there are two or one equilibrium angles, there 
must be one stable equilibrium angle. The reason is the 
following:

Since torque is continuous and must be positive when =
, and negative when = , at least one solution for the torque 

balance equation exists. Positive torque induces counter-
clockwise rotation of the failure joint by the strings, resulting in 
an increase in the joint angle, while negative torque causes a 
decrease in the joint angle. Therefore, if the curve intersects the 
x-axis (T = 0) during the decreasing phase, the torque restores 
the joint angle and the intersection point represents a stable 
equilibrium angle. Thus, all stable equilibrium points are closer 
to than unstable equilibrium points.

Hence, a relatively straightforward algorithm can be 
employed to identify the stable equilibrium point: when the 
angles of other joints are specified, for the failure joint, the 
torques T on both sides of the strings are calculated as the angle 
increases/decreases from to 0. The process halts when T
changes its sign, and the stable equilibrium point can be 
pinpointed using the dichotomy method. Subsequent 
calculations in our work exclusively utilize the stable 
equilibrium angle.

III. RESULT

A. Calculate the FTWS
The FTWS is determined by evaluating the workspace for 

each one joint after failure at any angle and subsequently 
establishing their intersection. For the robotic arm under study, 
when one joint fails, the active joints remain stationary, while 
the failure joint moves to a stable equilibrium angle. 
Consequently, the end effector successfully reaches a point 
within the workspace of that failure. Subsequently, the active 
joints undergo quasi-static motion, traversing all possible angles. 
The failure joint also rotates accordingly, consistently remaining 
at the corresponding stable equilibrium angle. We can determine 
the end effector position by the active and failure joints angle, 
representing the workspace for a specific joint failure.

We also need to consider whether all stable equilibrium 
angles are attainable. If a negative one is in need, we can adjust 
all active joints to initially. Referring to Fig. 2(b), the failure 
joint exhibits only one stable equilibrium angle, which is 
negative. Subsequently, the active joints are quasi-statically 
adjusted back to the angles present at the time of the failure 
occurrence. As a result, the failure joint consistently maintains a 
negative stable equilibrium angle. To obtain a positive 
equilibrium angle, the aforementioned steps can be repeated 
with replaced by . All stable equilibrium angles can be 
utilized in the calculation of FTWS.

B. Two-Dimensional Results

1) Planer Two-Link Robotic Arm:
In the scenario where joint 1 fails, joint 2 undergoes rotation 

from to . Each angle of joint 2 corresponds to one or two 
stable equilibrium angles of joint 1. By plotting the workspace 
corresponding to the positive and negative stable equilibrium 
angles of joint 1 and comparing it with the workspace 
corresponding to the failure of joint 2, six intersection points are 
identified as the FTWS of the planar two-link robotic arm with 
tension = 0.9 and a = 0.2, as shown in Fig. 3(a). A comparison 
with the FTWS obtained by locking the joint upon detecting 

Fig. 2. (a) Net torque (blue line) on the failed joint 3 with the other two joints 
fixed at 0. The red line indicates T = 0 and the numbers on the line indicates 
the equilibrium angles. (b) Net torque on the failed joint 3 with the other two 
joints fixed at . (c) Configuration of robotic arm as joint 3 reach three 
equilibrium angles shown in (a).
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free-swinging failure reveals an improvement from an empty set 
to six points.

Before delving into the analysis, it is essential to 
acknowledge a key property of the FTWS: symmetry. For a 
planar robotic arm with n joints, , the end 
points are symmetrical with respect to the x-axis when all joints 
assume opposite angles. When joint i fails, 
and have perfectly symmetrical 
positions, and the corresponding torques on the elastic strings 
are also perfectly symmetrical. That means when is the 
equilibrium angle for , is also 
the equilibrium angle for ,
and the end positions of both are in the FTWS. As a result, 
FTWS must be symmetrical about the x-axis.

Given the symmetry, only three points 1, 2, 3 on the FTWS 
are analyzed. Fig. 3(b, c) illustrates the robotic arm 
configurations reaching points 1, 2 and 3 when the second joint 
and the first joint fail, respectively. These configurations are 
combined in Fig. 3(d). It is observed that for point 1, different 
joint failures yielding stable equilibrium angles result in the 
same robotic arm configuration. Point 3 exhibits a similar 
phenomenon, with the only difference being the joint angle. 
Point 2, however, displays different configurations for different 
joint failures. Further observation of the angle shows that there 
is when reaching point 1 and for point 3.

Next, an analysis is conducted for situations where two 
failure points share the same configuration. For the case where 
both and , > 0, we have

for joint 1 fails and

for joint 2 fails. represents the force on the string i when 
the joint j fails. Since the robotic arm shares the same 
configuration when either joint 1 or joint 2 fails, the stretch 
amount of the corresponding elastic strings is identical.  
Consequently, the force on the same string is equal, i.e., 

, i = 1, 2. Dividing the two equations gets:

It is obvious that satisfies (6). For a robotic arm with 
parameters tension = 0.90, a = 0.2, = 1.13 is the sole 
solution. However, a parameter change may introduce the 
additional solutions. For instance, tension=1.05, a=0.2 leads the 
additional solutions ( ) = (1.52, 0.98) and (0.98, 1.52) 
except from the definite one, = = 1.29. The existence of 
this second solution is parameter-dependent, but =
remains a constant solution. By substituting = into (4)
and (5), the following expression is derived:

, , are only related to . Solving this equation 
provides the points in the FTWS, specifically illustrated as point 
1 and 4 in Fig. 3(a).

In the scenario where and have different signs while 
the two failures still share the same configuration, assuming >
0 > , the following torque balance equations are formulated:

When =
the force on each string is equivalent, i.e., . Additionally, 
sin = sin as = . Consequently, the two equations 
degenerate into one:

The equation implies that the two strings are parallel to the 
arm between the failure joint and the following pair of rings, 

leading to = = . This angle remains 
unaffected by the parameter tension, remarkably. Thus, two 
points in the FTWS must represent the end effector when =

( , ), as illustrated by points 3 
and 6 in Fig. 3(a).

When two failure conditions result in different 
configurations within the FTWS, as seen in point 2 of Fig. 3(d), 
four angles (two joint angles for each joint failure) can be 
obtained through four equations: two torque balance equations 
and two end position equations. The computed results exhibit 
variations dependent on the parameters tension and a. Further 
analysis will be conducted in future investigations to delve 
deeper into these findings.

Fig. 3. (a) Workspace of the two-link robotic arm with parameters a = 0.20, 
tension = 0.9 when each joint fails. The light cyan line represents the 
workspace when the first joint fails, and the yellow line represents that of the 
second joint failing. Their intersection is the FTWS, the six points. (b) The 
robotic arm configurations when joint 1 fails, considering the end effector 
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In summary, the FTWS of a planar two-link robotic arm 
consists of several points on the plane. These points exhibit 
symmetry about the x-axis. The robotic arm reaches two of these 
points when the two joint angles are identical, while reaching 
the other two with joint angles = ( ,

). Compared to locking the free-swinging 
failure joint, the FTWS demonstrates expanded capabilities.

2) Planer Three-Link robotic arm:
Similar to the two-link robotic arm, the FTWS for a planar 

three-link robotic arm in the case of a single joint failure is 
determined by considering both positive and negative stable 
equilibrium angles. The FTWS is computed using the specified 
parameters tension = 1.4 and a = 0.2. Fig. 4(a) illustrates the 
workspace in the event of joint 1 failure. By adjusting the angles 
of joints 2 and 3, the robotic arm's end effector can reach all 
points within this workspace. Fig. 4(b) displays the workspace 
when joint 2 fails, with a small section removed in the middle. 
The workspace of joint 3 failure is depicted in Fig. 4(c), where, 
in addition to the region near the origin, there is a crescent-
shaped area in the negative direction of the x-axis that remains 
unreachable. The intersection of these workspaces forms the 
FTWS shown in Fig. 4(d). In contrast to the FTWS of a locked-
joint robotic arm, which consists of points on a circle with a 
radius of 1, the FTWS expands from a curve to an annular region, 
transitioning from one-dimensional to two-dimensional.

C. Three-Dimensional Result

1) Design for the Three-Dimensional Robotic Arm:
In addition to the design considerations for planar robotic 

arms, we also explored the configuration of a spatial robotic arm. 
For a spatial robotic arm with Denavit-Hartenberg (D-H) 
parameters as shown in Table I, the incorporation of artificial 
tendons involves adding cross structures to the positions 
originally occupied by the supports, as illustrated in Fig. 5(b). 
The tops of these structures function as rings, maintaining a 
distance d from the center of the arm. The elastic strings traverse 

from one ring to another on the cross structure and then connect 
to the subsequent joint. The segment of elastic strings situated 
between two cross structures lies in the motion plane of the joint, 
and the two-dimensional equation can be extrapolated to the 
three-dimensional space. Fig. 5(a) provides a schematic 
representation of the spatial robotic arm.

2) Calculation for FTWS of 3D Three-Link Robotic Arm:
When a single joint fails in the three-dimensional three-link 

robotic arm, the resulting workspace consists of surfaces. The 
intersection of failures in three different joints forms a set of 
points, representing the FTWS of three-dimensional robotic arm. 
In order to accurately calculate the position of each point and the 
corresponding joint angles, the following algorithm is devised:

I. Calculate the equilibrium angle when joint 1 fails, 
with joints 2 and 3 varying in the range from to

with an interval of . A similar process is 
employed when joint 2 or 3 fails.

II. Determine the end effector position using the angles 
obtained in step I, denoted as points set 1, 2, and 3 
for each joint failure.

III. Identify points from points set 1 that are close to 
both points in sets 2 and 3, where the distance 
between points is less than a precision parameter .
The obtained points constitute the approximate 
FTWS. simultaneously, the approximate joint 
angles for joint 1 failure is gotten.

IV. Find the points in points set 2 and 3 that are closest 
to those in the approximate FTWS. Obtain 
approximate joint angles  for joint 
2 failure and  for joint 3 failure.

V. Use the Newton method to derive the real solution 
from each approximate solution , , .

Fig. 4. (a-c) Workspace of the robotic arm when joint 1-3 fails, the red, green, 
blue part respectively. (d) The green part is the FTWS of the robotic arm, 
compared with FTWS of a traditional locked-joint fault-tolerance robotic arm, 
as shown in blue line.

Fig. 5. (a) Configuration of a spatial robotic arm with elastic strings. The discs 
represent joints, with the first joint on the left. The gray part denotes the arms, 
while the red and green lines on both sides of the robotic arm represent elastic 
strings. (b) Crossed structures hold the rings where the elastic strings pass 
through.

TABLE I.    D-H PARAMETER FOR THE ROBOTIC ARM

1 0

1 0

1 0 0
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VI. Verify the physical feasibility of the real solution. 
Ensure that every joint angle in , , lies in the 
range [ , ].

Steps I-IV are intended for calculating the approximate 
solution. When , we take = 0.10 to find 

the approximate solution. This choice of ensures that the 
approximate solution remains close to the real solution, with the 
distance between the end effector of the two solutions being less 
than (see Appendix B for details).

3) Results and Analysis for FTWS of 3D Three-Link 
Robotic Arm:

The resulted FTWS includes all points on the circle of radius 
1 and additional points outside the circle (Fig. 6(a)). Such FTWS 
is also greater than the FTWS with a locked-joint strategy, which 
is only a circle. Like the planar two-link robotic arm, symmetry 
of the robotic arm results in a symmetrical FTWS about the x-
axis. We will analyze the points on the circle first and discuss 
how the robotic arm reaches these points. Both locked-joint and 
free-swinging failure will be discussed and compared to each 
other.

For a locked-joint robotic arm, in the extreme case where the 
second joint fails at , the end effector is confined to the circle. 
Therefore, points outside the circle cannot be part of the FTWS 
of the locked-joint robotic arm. Next, we discuss how the robotic 
arm reaches these points when failures occur at individual joints. 
If the 1st or 3rd joint fails and locks at any angle, the 2nd joint 
can be controlled to stay at an angle of . The end effector rotates 
along the circle as the other active joint moves from to ,
eventually returning to the initial point. Similarly, when joint 2 
fails and locks at any angle, setting joint 3 to allows the end 
effector to traverse all points on the circle as the 1st joint moves 
from to .

In the case of a free-swinging joint failure, the angle of the 
failure joint changes as the other joint moves. Fortunately, when 
the first or third joint fails, the same process can be applied as in 
the locked-joint failure. The failure joint always has a negative 
stable equilibrium angle, gradually decreasing as the unfixed 
active joint becomes larger. This overall effect promotes the 
rotation of the end effector, causing it to rotate slightly more than 
the entire circle. When the second joint fails, with the third joint 
stopped at , the end effector coincides with the second joint. As 
the first joint moves from to , the end rotates once along the 
circle. Consequently, the circle also constitutes part of the 
FTWS of a free-swinging fault-tolerant robotic arm.

The FTWS for a free-swinging failure also includes points 
outside the circle, which are inaccessible for locked-joint 
failures. For these points, the robotic arm's configuration can be 
expressed in terms of joint angles, denoted as .
Each point can be achieved by at most two sets of angles: 

and (see Appendix C). Similar to the analysis 
conducted on the planar two-link robotic arm, we examine the 
robotic arm experiencing three different joint faults reaching a 
specific point on the FTWS in both the same and different 
configurations.

By symmetry, we only need to discuss the case 0. When 
the same configuration is used and all the joints are in the same 

sign , 0. Similar to the explanation provided for the planar 
two-link robotic arm, the force on the same string is equal when 
any joint fails. The equations for the three different failure cases 
are:

Consequently, sin = sin = sin . Obviously = =
is a solution (see Fig. 6(c)). As we have explained in planer 

two-link robotic arm, there can be other solutions for the 
equation for some system parameters.

When the three failed joints exhibit different signs, but the 
robotic arms remain in the same configuration, the case of 
0, 0 leads to the following equations:

Subsequently, we derive the following relations:

Fig. 6. (a) FTWS of the spatial robotic arm, including a circle of radius 1 (blue) 
and scattered points (red and green). Red points refer to those reached by the 
same configuration when different joints fail. Green points refer to those reached 
by different configurations when different joints fail. (b) Configurations of the 
robotic arm for reaching the point (1,0,0) on the circle when each joint fails. The 
orange robotic arm fails at the first joint, the blue one fails at the second joint 
and the red one fails at the third joint. The third arm of the yellow and orange 
robotic arms is obscured by the blue robotic arm. (c-d) The robotic arm reaches 
points with same configuration when different joints fail. (c) shows the 
configuration when all the joint angles are equal.(d) shows one configuration 
when all the joint angles are not equal. 
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obviously satisfies the equation. Therefore, for the 
scenario where two joints have the same sign and the other joint 
has a different sign, two joint angles are equal is a solution. This 
corresponds to the six red dots in Fig. 6(d). The other two red 
dots are the cases where all joint angles are identical.

In the situation where the three faults converge at a point on 
the FTWS in two configurations (green points), we have not 
found analytical relations between the joints. They might just 
occur by coincidence.

IV. CONCLUSION

This paper investigates the fault-tolerance of robotic arms 
under free-swinging failure, employing elastic strings to control 
the failed joints. The manipulation is achieved by regulating the 
force and torque exerted by the elastic strings on the arms 
through other functioning joints.

The FTWS for both planar and spatial robotic arms is 
computed and compared with the FTWS obtained by directly 
locking the failure joint. It is noted that robotic arms equipped 
with elastic strings demonstrate an increased FTWS. In the 
context of the planar two-link robotic arm, the FTWS undergoes 
a transition from an empty set to multiple points in the plane. 
Similarly, for the planar three-link robotic arm, the FTWS 
expands from points on a circle with a radius of 1 to an annular 
region. In the case of the spatial three-link robotic arm, the 
FTWS encompasses additional scattered points in space, 
expanding upon the foundation of a circle with a radius of 1.

A detailed analysis of how the robotic arm attains FTWS 
during a failure event has been conducted. Examination of 
points within the FTWS, including configurations and joint 
angles, reveals that in both the planar two-link and spatial three-
link robotic arms, certain points are reached by the robotic arm 
in identical configurations when different joints fail. 
Remarkably, there are many instances where all joint angles are 
equal.  

The fault-tolerant robotic arm proposed in this paper 
presents a novel approach to address free-swinging failure and 
has the potential for extension to other fault-tolerant machines. 
By incorporating a simple device without increasing degrees of 
freedom, the machine's fault-tolerance can be significantly 
improved.

APPENDIX A

CALCULATION OF THE TORQUE

In the event of a free-swinging failure in a joint, the failure 
joint divides the robotic arm into two parts. We need to compute 
the torque applied on the joint from the strings on the end-
effector side. When the string contacts the robotic arm on a ring, 
the net force is the sum of the tensions from two sides of the ring 
(Fig. 7(a)). When the string contacts the robotic arm on a joint 
(Fig. 7(b)), the force exerted by the string on the joint can be 
considered as multiple pressures .  Each is the resultant 

force of the two tensions, and . Observing that the resultant 

torque generated by and is zero, the total torque exerted by 

the string on the joint can be all attributed to and .

If the second joint fails (Fig. 7(a)), the part of robotic arm 
containing the end effector includes the second arm, the third 
joint, the third arm, and the end effector. The green string 
connects this part through two rings, generating three forces: ', 

', and '. Forces ' and are on the same segment of string, 
and their resultant torque on the failure joint is zero. So that the 
total torque of this string on the failure joint is determined by  '. 
The red string generates  , , at the rings and , at the 
joint. The torques generated by forces , cancel each other out, 
so as to forces , . The total torque of the red string on the 
failure joint is determined by . The force applied by the string 
on the failure joint does not have any effect on its rotation, since 
the forces are pointing to the rotational axis of the joint.

APPENDIX B

CHOICE OF 

In the initial two steps of the algorithm, the workspace for 
joints 1, 2, and 3 failure is determined individually. Given that 
we take an interval of for the functioning joints, the obtained 
workspace is a non-Cartesian mesh within the actual 3D space. 
The actual intersection of the workspaces might be between two 
vertices of the mesh (Fig. 8). Here we show that the distance 
from this point to the nearest mesh vortex follows the 
relationship: :

By utilizing the Denavit-Hartenberg (DH) parameters, the 
transformation matrices (A matrices) are expressed as following:

Fig. 7. (a) The forces exerted by the strings on the part of robotic arm 
containing the end effector when the second joint fails. (b) When one string 
contacts with one joint, the forces exerted by the string are represented by the 
black lines. The tensions in the string are indicated by the blue lines.
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So we get the T matrix

and kinematic formula

Here is the first three rows of the Jacobian matrix, 
calculated from T matrix,

When is controlled to fix at different values, varying ,
the robotic arm's end effector traces out a set of blue lines, as 
illustrated in Fig. 8. represents the interval between these 
values. The green lines correspond to controlling at certain 
fixed values. The intersections of the blue lines and green lines 

form the mesh. The vertices on the mesh are the discrete points 
we compute in the algorithm. In one blue line or one green line, 
there is = 0 or = 0. From Fig. 8 we get:

For or , we have = , = 0. For or ,
we have = and = 0.

When one of joint 2 and joint 3 is controlled to stop at one 
angle while the other change , it is observed that the change 
of the failure joint is consistently smaller than .
Consequently, when joint 1 fails, we find:

If any one joint fails, one of , , is set to 0, another 
is assigned the value of , and the remaining one is constrained 
to be smaller than . Under these conditions, the result is 
obtained as follows: | | 5 , | | 5 , | | 3 , | |

. The small region surrounding the point within the 
FTWS can be approximated as a plane when is sufficiently 
small. In this scenario, the geometric relationship assures us that 

.

Here, represents the distance from the point in FTWS to 
the nearest vortex in the mesh. Additionally, the distance 
between two closest vertices from different meshes, such as the 
mesh associated with joint 1 failure and joint 2 failure, should 
be smaller than .

APPENDIX C

AT MOST TWO SETS OF SOLUTIONS REACHING POINTS OUTSIDE 

THE CIRCLE

Utilizing the T-matrix from (14), we obtain the equation for 
the end effector position of the robotic arm:

Fig. 8. Schematics of the workspace when joint 1 fails. The point in the middle 
is one point of FTWS. Green (blue) lines represent the route of the end effector 
when the third (second) joint is fixed and the other joint can rotate freely. The 
four intersection points are obtained in step II in the algorithm. The distance of 
each other is , and the distance from the point in FTWS to the nearest vertex 
in the mesh is .
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Using , we obtain:

We observe that when cos = 1, i.e., = , ( , z) =
. The end effector of the robotic arm is located on the circle, 

consistent with our previous analysis of points on the circle.

When cos 1, (22) can be rewritten as follows:

Substituting back into (21), we have:

for [ , ] and

for [ , ], [ , ].

Let t = cos + 1, then t (0, 2) as ( , ).  Equation 
(24) and (25) become

Eliminate the square root and rewrite the above expression:

For one end effector position, and z are unique, and we get 
only one t from (27). Correspondingly, there are at most two 
satisfying (24) and (25). For one t = cos + 1, we can find only 
one [ , ] that satisfying (23). When both and are 
determined, rewriting the x and y terms in (20) yields:

The determinant of the coefficient matrix is:

This implies that (28) has a unique solution, i.e., for each set 
of (x, y, z), when and are determined, there exists only one 

.

In summary, we first determine that at most two values to 
reach a point outside the circle. Then we established that only 
one for the two .  For each set of ( , ), there is a unique 

. Therefore, the joint angles have at most two sets of solutions: 
and .
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