
PHYSICAL REVIEW E 88, 012204 (2013)

Lift and drag in intruders moving through hydrostatic granular media at high speeds
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Recently, experiments showed that forces on intruders dragged horizontally through dense, hydrostatic granular
packings mainly depend on the local surface orientation and can be seen as the sum of the forces exerted on small
surface elements. In order to understand such forces more deeply, we perform a two-dimensional soft-sphere
molecular dynamics simulation, on a similar setup, of an intruder dragged through a 50–50 bi-disperse granular
packing, with diameters 0.30 and 0.34 cm. We measure, for both circular and half-circle shapes, the forces
parallel (drag) and perpendicular (lift) to the drag direction as functions of the drag speed, with V = 10.3–
309 cm/s, and intruder depths, with D = 3.75–37.5 cm. The drag forces on an intruder monotonically increase
with V and D, and are larger for the circle. However, the lift force does not depend monotonically on V and D,
and this relationship is affected by the shape of the intruder. The vertical force was negative for the half-circle,
but for a small range of V and D, we measure positive lift. We find no sign change for the lift on the circle,
which is always positive. The explanation for the nonmonotonic dependence is related to the decrease in contacts
on the intruder as V increases. This is qualitatively similar to supersonic flow detachment from an obstacle. The
detachment picture is supported by simulation measurements of the velocity field around the intruder and force
profiles measured on its surface.
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I. INTRODUCTION

Granular matter is a generic name given to a system
composed of macroscopic, athermal particles that have
mutual repulsive, dissipative interactions [1]. It is an in-
tensely studied field in the physics community given the
several distinct behaviors shown by such systems as a
consequence of different external conditions imposed on
them.

One such condition is that which imposes a flow of particles,
named granular flow [2–5]. Within the several granular flow
examples, the flow around immersed obstacles has received
some attention lately [6–8]. One of the objectives of such
investigations is to measure the force in the obstacle due to
interactions with the flowing grains, the so-called granular
drag [9–14], and lift [14–17].

The drag was studied for several distinct situations: For
bodies immersed in slow, dense flows [10,11,14], it was
observed that the drag is proportional to the intruder size
(cylinder diameter or vane width), to the squared insertion
depth, and independent on the mean flow speed; for obstacle
within fast, dilute flows [9,12], this force was seen to obey
the familiar drag law for flows around spheres in fast viscous
flows (proportional to obstacle diameter and to the square of
flow speed); finally, studies on impacting bodies [18–20] show
that the drag is a sum of gravity, Coulomb friction (depth
dependent), and inertial drag (proportional to the square of the
penetration speed). This is the granular analog of Poncelet law
used in ballistics.

The lift was explored for partially submerged vanes [14,15],
where it was seen to scale with several geometrical parameters
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of the vane. For horizontally translating objects [16], the lift
was seen to depend mainly on the local surface geometry.
The lift on a cylinder and a vertical plate was positive, while
that on a half-cylinder (with the flat surface facing down) was
negative. A calculation based on the forces exerted on small
surface elements was able to nicely predict the value observed
in the experiments and simulation. Finally, the lift was also
investigated in an ellipse immersed in a fast, dilute flow [17]
and was seen to vanish for any symmetrical orientation of
the obstacle related to the flow direction. In addition, the
force calculated for an ideal gas flow of inelastic particles
qualitatively reproduced the numerical results, but predicted
a smaller force than the one measured in the simulations,
since the obstacle is shielded from the incoming flow by the
formation of a shock wave.

This work has the main objective of investigating the
behavior of the drag and lift forces in a body horizontally
translated through a dense granular at constant, high speed.
In [16], this force was investigated for a few parameters. Here,
we present simulations that extend the parameter ranges used
earlier to include values that are not currently accessible to
experiments. More specifically, we studied the drag and lift
forces on an intruder as a function of the drag speed, the
intruder depth and shape. We note that ours is one of the few
(if not the only one) studies of forces in intruders in fast, dense
conditions.

Our results point to a very interesting behavior of the
lift force, which is nonmonotonic dependence on the drag
speed and depth. Essentially, we saw that as the drag speed
increases, a supersonic granular flow [6–9,11,12,21–23] sets
in and, as will be detailed ahead, deeply affects the lift force.
Surprisingly, the drag force in this regime (even during the slow
transition), increases quadratically with the speed and linearly
with depth. This is in contrast to previous supersonic drag
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measurements, in which this force was seen to be independent
on the flow speed [11]. On the other hand, it agrees with
the results of supersonic dilute flows of [9,12]. Aside from
the total force measurements, we also measured flow fields
(velocity and number density) as well as force profiles along
the intruder surface in order to support our interpretation of
the results.

Section II presents the numerical model and parameters
used. Section III has all our drag and lift results. These are
followed by the fields and profiles data in Sec. IV. Finally, we
present our conclusions in Sec. V.

II. SIMULATION DESIGN

The system has N = 31276 soft disks (for speed studies)
and N = 46900 (for depth studies) in a 50–50 bi-disperse
mixture with diameters and masses d1 = 0.30 cm, m1 =
34.9 mg and d2 = 0.34 cm, m2 = 50.8 mg. The system is
located in a container of length LX = 100 cm.

The force between two contacting disks is given by the
model used in [16]. The normal component is

FN
ij = fij + fd

ij . (1)

The first term is a conservative part, given by the Hertz law:

fij = κδ3/2r̂ij ,

where κ = 1.04 × 105 N/m3/2 is the hardness, di is the ith
disk diameter, rij is the distance between the two disks,
δ = (di + dj )/2 − rij is the overlap distance, and r̂ij is a unit
vector along the normal between the disks’ centers. The second
term is a dissipative, velocity dependent force, given by

fd
ij = −σ (r̂ij · vij )δ1/2r̂ij ,

where σ = 7.28 × 10−2 N s/m3/2 is the normal damping
coefficient and vij = vi − vj is the relative velocity between
the disks. The tangential force at the contact point is given by
the following expression:

FS
ij = − (μPP FN ) v̂S

ij , (2)

where μPP = 0.10, the static friction coefficient between
particles (for particle-intruder contacts, μPI = 0.27), FN =
|FN

ij |, and v̂S
ij is the unit vector along the direction of

the relative velocity at the contact point. This vector is
calculated as

vS
ij = vij − (r̂ij · vij )r̂ij −

(
diωi + djωj

di + dj

)
× rij ,

where ωi is the ith disk angular velocity and vS
ij = |vS

ij |. The
total contact force Fij = FN

ij + FS
ij vanishes if the disks are not

in contact, i.e., if δ < 0. Finally, each grain suffers the effect
of gravity, given by a vertical force,

gi = −migj, (3)

where g = 981 cm/s2 is the acceleration of gravity, and j is a
vertical unit vector.

The intruder is either a circle or a half-circle (both with
the curved section facing upwards or downwards, which we
call inverted half-circle) with a diameter dI = 2.54 cm. It
is located, initially, at the position (xI = 1.5dI ,yI = H ); H

is the vertical position of the intruder as measured from the

FIG. 1. Pictorial representation of simulation parameters: in-
truder, of diameter dI , is dragged at constant depth D, and speed
V , under the influence of gravity. The average drag 〈R〉 is in
the −V direction, while the average lift 〈L〉 is in either ±g
direction.

bottom of the container. This parameter is related to the depth
D, vertical position measured with respect to the packing
free surface, by D = 30.0 − H , since for the number of
disks and their sizes used here the free surface height, after
settling, is ≈30.0 cm (for depth studies, the free surface is
≈45.0 cm tall); see Fig. 1. The interactions between the disks
and the intruders are the same as those given above for two
disks.

At the beginning, all disks are randomly generated without
overlap among them and with the intruder. At this stage, all
intruders are modeled as circles with diameter dI since this
facilitates the overlap check. Then, all disks are allowed to
settle under gravity long enough to bring the packing to rest,
i.e., when the total kinetic energy per disk is ≈10−4 J.

After the settling phase is finished, the intruder is dragged
horizontally, with a constant speed of V = 10.3–309 cm/s,
with a total of 16 speeds. We also performed measurements at
distinct depths, D = 3.75–37.5 cm, probing 10 distinct depths.
Our interest is in the drag R, and lift L forces, respectively, on
the intruders as well as flow fields and profiles. The first force
is in the negative horizontal direction (opposite to the intruder
displacement) while the second is in the vertical direction
(perpendicular to the intruder displacement) and can be either
positive or negative. All quantities are presented as averages
over time and five independent runs. See Fig. 2 for time series
examples of such measurements.

Our results can be cast as functions of the Froude number:

Fr = V 2

gdI

.

Given our parameters, this number starts at 4.26 × 10−2 and
ends at 38.3, spanning four decades in magnitude. As a
comparison, the impact experiments of [24] were performed in
the range 3.13 < Fr < 143. Notice, then, that our speed range,
although large, does not include very high Froude numbers.
Nevertheless, we will refer later in the text to results at low and
high speeds. These adjectives mean that we are considering,
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FIG. 2. Drag (a) and lift (b) vs intruder displacement for depth
3.75 cm and speeds (in cm/s): 10.3 (solid), 103 (dotted), 206 (dashed),
and 309 (dot-dashed).

respectively, speed values that are in the lower and upper end
of our range.

Equations of motion are integrated with a leapfrog scheme
[25], with a time step of 0.001. The settling phase is, typically,
105 cycles long, while the drag phase is long enough to displace
the intruder by ≈270d1.

III. NUMERICAL RESULTS

The next two subsections have the numerical results for the
drag and lift forces on the intruders as functions of the drag
speed and depth. In addition, we give a few remarks regarding
their interpretation that will be supported with the data for the
fields and profiles.

A. Drag force

We begin with the results for the drag as a function of the
drag speed, which are shown in Figs. 3 (circle), 4 (half-circle),
and 5 (inverted half-circle). We see clearly that the drag
monotonically increases with V . In addition, this growth is
approximately quadratic: The dashed lines in all three figures
are quadratic fits to the D = 3.75 cm curves. Fits to the
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FIG. 3. (Color online) Drag force on the circle as a function of
the drag speed and for three distinct depths. Dashed line is a quadratic
fit to the D = 3.75-cm data.
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FIG. 4. (Color online) Drag force on the half-circle as a function
of the drag speed and for three distinct depths. Dashed line is a
quadratic fit to the D = 3.75-cm data.

other curves were made as well and show similar agreement.
Therefore, this relationship is barely affected by shape and
depth of the intruders. The magnitude of the forces, however,
is largest for the circle, while it is approximately equal for
both half-circles (with the forces on the inverted one slightly
larger). The quadratic dependence on V indicates that the drag
follows a similar law to the one of the drag on a sphere dragged
through a viscous fluid at a high Reynolds number [9,12,26],
i.e., the average net drag comes, mainly, from inertial effects
(momentum exchange). In all three figures (Figs. 3–5), the
results for D = 15.0 cm, especially at low speeds, show
evident deviation from the quadratic V dependence. We will
show below that the inertial regime is characterized by flow
detachment, which means that when the intruder is dragged
through the packing, there is a trail of very low density
left behind it. Clearly, this trail will appear at a speed that
is dependent on the amount of material above the intruder.
Therefore, we may understand these deviations as being due
to the larger pressure at larger depths which makes the inertial
regime set in at higher speeds than those at more shallow
depths. More studies are needed to fully characterize the
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FIG. 5. (Color online) Drag force on the inverted half-circle as a
function of the drag speed and for three distinct depths. Dashed line
is a quadratic fit to the D = 3.75-cm data.
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FIG. 6. (Color online) Drag on the circle for varying depths and
three distinct drag speed values. Line is a linear fit to the data.

transition to the inertial regime, a task that is postponed to
future work.

We saw that the average drag bears a quadratic relationship
to the drag speed, and that it is similar to the behavior of the
drag force on immersed bodies in fast, viscous flows with the
flow speed. The classical fluid dynamics result also linearly
relates the drag force to the size of the intruder. To establish
that this relationship is the granular analog of the drag law, we
should investigate the drag dependence on the intruder size to
check for linearity between these two quantities. Preliminary
results show that, indeed, the drag is linear in dI .

The dependence of drag on depth is shown in Figs. 6 (circle)
and 7 (both half-circles). Like the results for V , the curves are
qualitatively insensitive to shape. We see that the plots follow
a linear dependence on D. The three linear fits, one for each
shape, confirm this fact. This linear D dependence can be
explained by the hydrostatic pressure, typical for our packing
conditions. Finally, we see, again, that the drag force for the
circle is larger compared to those for both half-circles, which
are close to each other. We understand this as a consequence
of the circle’s larger projected area perpendicular to the flow,
which allows it to push more grains than the other two shapes.
We cannot, however, take the net force on the circle as the
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FIG. 7. (Color online) Drag on the half-circle (solid symbols) and
inverted half-circle(open symbols) for varying depths and two drag
speeds (in cm/s): 61.7 (triangles) and 247 (right triangles). Lines are
linear fits to the data.
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FIG. 8. (Color online) Lift force on the circle as a function of the
drag speed and for three distinct depths.

sum of the forces on the half-circles because of large forces at
the leading edge of these shapes, a fact seen previously [16]
and in our force profiles. We can only make this connection if,
when summing up half-circle forces, do not take into account
contributions from the flat sides and edges.

B. Lift force

The lift results are shown in Figs. 8 (circle), 9 (half-circle),
and 10 (inverted half-circle) as functions of the drag speed.

These plots are in marked contrast to those of the drag
forces (Figs. 3–5). As stated in the introduction, the behavior
of the lift with drag speed is complex, so let us begin with the
circle.

We can see that the curves have three distinct regimes:
one at low speeds, in which 〈L〉 grows with V . The range of
this regime seems to be longer for deep intruders: The curve
for D = 15.0 cm changes behavior at V = 82.4 cm/s, while
the other two change at V = 61.8 cm/s; a second regime
at intermediate speeds, where the lift may decrease (deep
intruder) or be roughly constant (shallow intruders); and a
third regime, appearing at high speeds, V � 227 cm/s for all
depths, shows 〈L〉 monotonically increasing with V , and this
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FIG. 9. (Color online) Lift force on the half-circle as a function
of the drag speed and for three distinct depths.
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FIG. 10. (Color online) Lift force on the inverted half-circle as a
function of the drag speed and for three distinct depths.

growth seems to be linear (we need more data to confirm that
this relationship is linear).

For the half-circle, at low drag speed the lift grows with the
V , and, interestingly, this growth is such that the lift force
inverts its direction at some depth-dependent speed. After
〈L〉 reaches a maximum (positive) value, it enters the second
regime, where it decreases with V and becomes negative again.

For the inverted half-circle (Fig. 10), the lift grows with the
drag speed for all depths and speeds. In any case, we still have
an initial regime of monotonic growth with V , an intermediate
regime (not very clear for the shallowest intruder), and a fast
regime, in which the curves are similar to those of the circle.

The dependence of 〈L〉 on depth for the circle is shown
in Fig. 11. We see that, in all three speeds, the lift linearly
decreases for high D, as seen from the linear fit to the V =
247 cm/s curve. For the slowest intruder, this depth is D =
15.0 cm while for the other two, D = 26.3 cm. The other part
of these curves show that, as we increase V , the lift passes
from an initial increase, at V = 61.8 cm/s, to a plateau, at
V = 165 cm/s, to an initial decrease, at V = 247 cm/s, with
D. The last two, however, will eventually grow and reach a
maximum before entering the decreasing regime.

The curves for both half-circles, Fig. 12, are markedly
different from those of the circle. First, we see that only for the
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FIG. 11. (Color online) Lift on the circle as a function of intruder
depth.
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FIG. 12. (Color online) Lift on the half-circle (solid symbols) and
inverted half-circle (open symbols) for varying depths and two drag
speeds: 61.8 cm/s (triangles) and 247 cm/s (right triangles).

inverted half-circle at high speeds the lift behaves qualitatively
similar to the one in the circle. For a fast half-circle, the
curve has the inverse relation; it decreases at low depth up
to minimum at D = 18.8 cm, and increases for larger D. For
V = 61.8 cm/s, the lift on the inverted half-circle is not much
affected by the depth, except at low D. Finally, we see again the
sign inversion phenomenon seen in Fig. 9: The lift is positive,
although small, for depths below D = 15 cm, and negative
above this value.

All these results show a very interesting picture: The drag
has simple relations with speed and depth, while the lift does
not. Both of these forces, however, come from the same kind
of interactions, which are grain-intruder repulsive contacts.
Therefore, we naturally ask the reasons behind these distinct
relations. We know that the forces depend on the number of
contacts and the overlap in these contacts (friction is also
proportional to the overlap, but is bounded due to Coulomb
failure condition, so its influence is limited). These two
quantities are not, necessarily, related: A large force could
result from a large number of contacts with small overlaps
or from a few contacts with strong overlaps. Moreover, a
knowledge of both quantities, number of contacts, and contact
overlaps does not explain our results. We should also pay
attention to the contact position in the intruder surface and to
the fact that we measure net forces. The first information is
needed because, as shown in [16], the forces depend on the
local geometry. The second is important because the drag is
the sum of the horizontal forces on the leading and back sides,
while the lift is the result of contributions from the vertical
forces above and below the horizontal line (the flow direction)
that passes through the center of the intruder. Since the results
for the net lift have more interesting behaviors, we concentrate
our efforts in understanding the reasons that led to the results
of Figs. 8–12. Hence, the following analysis deals mainly with
data for lift force.

We reasonably assume that the contact overlaps on the
leading side increase with V , and those on the back side
decrease with speed. In addition, overlaps should increase
over the whole intruder for larger depths due to larger packing
pressure. Since the drag always increases with V and D, we can
easily understand the drag results as the leading drag increasing
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faster with increasing speed and depth than that on the back
side for the whole range of parameters we studied.

Following this explanation, we conclude that the lift forces
above and below the intruder are comparable, since the
dependence on V and D is nonmonotonic. The decreasing
regimes seen in Figs. 8, 9, 11, and 12 can only occur if the lift
on top increases faster with V and D than that on the bottom.
In the same way, increasing lift regimes only occur if vertical
forces on the bottom grow faster with V and D than those on
top. Since the overlaps on the bottom are larger than those on
the top, the only way to have decreasing regimes is if some
effect occurs with the contact number. Moreover, this effect is
not, in principle, the same above and below the intruder. We
need to understand the effects of changing speed and depth
on the contact number in order to fully understand our results.
This is done in the next section where we present data on the
lift and contact profiles as well as their contribution from each
side of the intruder.

IV. FIELDS AND PROFILES

From the previous discussion, the nonmonotonic relation-
ship between 〈L〉 and V is the consequence of the unequal,
but comparable, forces on the upper and lower sides of an
intruder. In addition, these two contributions should have their
own relationships with V and D. To have a more clear idea
of the effects into play, we show in this section data on the
lift and contact profiles along the intruder surface, as well as
velocity fields.

Let us begin with the lift profiles 〈L(φ)〉. A few examples are
shown in Fig. 13 for the circular intruder for D = 15.0 cm and
eight distinct speed values. We first see that these profiles are
consistent with previous numerical results [16], which showed
that the force is larger on the lower side than in the upper side
(hydrostatic condition) and it is not symmetric with respect to
the leading point in the intruder, which allows a vertical plate
to have a nonvanishing, positive lift when dragged through the
packing.

Another interesting aspect of these profiles is that, as we
increase the drag speed, the forces become more concentrated
in the range [−π/2,π/2], with practically zero force outside
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FIG. 13. Lift profiles on the circle for D = 15.0 cm. Speeds
(in cm/s): 10.2 (solid), 41.2 (dotted), 82.4 (dashed), 124 (dot dashed),
165 (circles), 227 (squares), 268 (stars), and 309 (crosses).
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FIG. 14. Contact number profiles for the circle for D = 15.0 cm.
Speeds (in cm/s): 10.2 (solid), 41.2 (dotted), 82.4 (dashed), 124 (dot
dashed), 165 (circles), 227 (squares), 268 (stars), and 309 (crosses).

this range. This feature is also seen in the drag profiles (not
shown), 〈R(φ)〉, which are symmetrical with respect to φ = 0
and are peaked around this value (the leading end of the
intruder). However, in this case, the nonzero elements of the
profiles have all the same sign (negative) instead of the positive
and negative contributions seen in Fig. 13. This fact naturally
leads to a larger net drag compared to a net lift. We conclude,
then, that at high speeds, the net drag and lift come from the
contribution made only on the leading side of the intruder.
At low speeds, the forces are nonzero over the whole surface
(a zero force value in the profile means that no grain ever
touched the intruder at that point). To confirm this fact, we
show in Fig. 14 the contact number profiles for the same cases
as those of Fig. 13. Indeed, we see that our previous statement
on the concentration of forces on the leading side of the intruder
is confirmed. We show, in Figs. 15 and 16, examples of velocity
field and packing configuration for high speed. We can see that
the zero contact number is a consequence of the appearance of
a trail of zero density behind the intruder. Since when it moves
it pushes grains up and down, the trail is formed because
these thrown grains do not fall back to their initial heights
fast enough to fill up the space behind the intruder. It is easy
to see that at lower drag speeds, grains will be pushed more
gently, up to a point where they merely pass over the intruder
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m
)

V
 (cm

/s)

3000

30

0

9.01

FIG. 15. (Color online) Velocity field, measured in the intruder’s
frame, in a window 30.0 cm × 30.0 cm centered on the circle, at
V = 268 cm/s and D = 15.0 cm.
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FIG. 16. Local packing configuration around the circle at
V = 247 cm/s and D = 15.0 cm.

(first regime) and the trail is absent. We observed that this
effect is depth independent; the trail is always formed for large
enough speeds.

The appearance of a vanishing density region behind an
intruder is commonplace in studies of supersonic granular flow
[6–9,11,12,21–23]. Therefore, we call this effect a granular
flow analog of detachment of supersonic fluid flow around
obstacles: At high drag speeds, there are only contacts on
the leading side of the intruder. The marked distinctions that
appear in our results concern the shock front. In the cited
reports, shock fronts are seen to be symmetrical regarding
the incident flow direction, with a parabolic shape, with a
solid region right in front of the leading (stagnation) point
in the obstacle. Our shock front is asymmetrical with respect
to the drag direction, since gravity is perpendicular to this
direction. In addition, we do not observe any parabolic, static
configuration in front of the intruder, although there is a typical
stagnation point there (see Fig. 15).

From this discussion, it is easy to see that the amount of
material above the intruder decreases the height that grains
attain when thrown up by the intruder. Therefore, the speed
at which the trail appears is affected by depth. We may
estimate this speed by calculating the time, tF , a thrown grain
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FIG. 17. Lift on top (open) and bottom (solid symbols) of the
circle as functions of the drag speed. Depths (in cm): 3.75 (circles),
7.50 (squares), and 15.0 (triangles). Dashed and solid lines are
quadratic fits to the data.
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FIG. 18. Contact numbers on top (open) and bottom (solid
symbols) of the circle as functions of the drag speed. Depths (in cm):
3.75 (circles), 7.50 (squares), and 15.0 (triangles). Lines are guides
to the eyes.

takes to fall a distance h and the time the intruder takes to
move an effective radius (d + dI )/2 (assuming that the falling
grain and the intruder are at the same horizontal position).
A precise estimate can only be given if we can calculate the
distance h. Since this is a complicated matter, we need to
take into account how the forces are transmitted through the
packing and the effects of depth in order to calculate h more
accurately; we assume that this height is, simply, one effective
radius. Then, the time a grain takes to free fall this distance is
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FIG. 19. Configuration snapshots for D = 3.75 cm and distinct
speeds (in cm/s): (a) 10.3, (b) 61.8, (c) 103, and (d) 165.
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FIG. 20. Lift on top (open) and bottom (solid symbols) of half-circle (a), and inverted one (b), as functions of the drag speed. Depths
(in cm): 3.75 (circles), 7.50 (squares), and 15.0 (triangles).

given by

tF =
√

(d + dI )

2g
.

The time the intruder moves one effective radius at speed V is

tD = d + dI

2V
.

The trail occurs when tF � tD . Then, the onset of this
phenomenon is given by

V =
√

(d + dI )g

2
.

From our data, d = 0.32 cm (mean particle diameter), dI =
2.54 cm, and g = 981 cm/s2, the speed value can be calculated
to be V = 37.5 cm/s. This value is below the speed at which
the first regime ends, between 61.7 cm/s and 81.3 cm/s.

In addition, it is clear from Fig. 14 that the overall
contact number decreases with V , which confirms our previous
argument; the number of contacts is affected by the increase
in drag speed. This change, however, does not affect the drag
force, since most of its value comes from the leading side. The
effect is seen on the lift because the forces on the upper and
lower sides of the circle are comparable. We show in Figs. 17
and 18 the values of the lift and contact number on the top and
bottom of the circle for all speeds in order to consider each
contribution separately.

We see that the top lift has an approximate quadratic
dependence on V , like the drag, as suggested by the quadratic
fit for the D = 3.75 cm curve (dashed line). The bottom lift,
on the other hand, shows only one evident quadratic regime at
low speeds. This behavior is seen from the quadratic fit to the
D = 15.0 cm curve. Given the drag results, we feel that the lift
on the bottom should be quadratic at all V and that, perhaps
due to large noise in lift measurements, also reported in [14],
such behavior is hidden in these plots. In any case, we see that
the lift behavior at low speeds is correlated to a fast decrease
of the contact number on both sides. This fast decrease should
be followed by a drop in the forces, which is seen in the top
lift. The bottom one, however, increases for low V .

This results can be understood by the following mechanism,
illustrated in Fig. 19: When the intruder moves at low
speeds [Fig. 19(a)], grains flow upward and increase the free
surface height in front of the intruder [16]. This accumulation

will increase the packing pressure and, consequently, the
downward vertical force done by the bottom side. As the drag
speed is increased [Fig. 19(b)], the bump in the free surface
moves from a position in front of the intruder to one right
above it. This relieves the packing close to the intruder, and the
bottom lift decreases. As the speed is increased even further,
[Figs. 19(c) and 19(d)], the material is thrown up in the air
and the trail behind the intruder is formed. At high speeds,
the contact number reaches a plateau, which means that all
forces depend on V mainly through increasing pressure on the
leading side.

The conclusions we reached for both sides of the circle
also hold for the half-circles. Comparing Figs. 9 and 10 with
those for the top and bottom lift, respectively, we see that they
are qualitatively similar. It implies that the contacts on the flat
side should not have a severe change with V , even though
they are the reason the lift inverts the sign for the half-circle.
The lift and contacts on the flat side show a distinct picture.
Our results (Fig. 20) reveal that the lift force on the flat sides,
on both half-circle shapes, decrease as we increase the speed
and reach practically the same value at high V , independent
on depth, although the initial values of this force grow with
D. This high speed plateau is an obvious consequence of flow
detachment. When the flow begins to detach from the intruder,
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FIG. 21. Lift profiles on the circle for V = 247 cm/s. Depths
(in cm): 3.75 (solid), 7.50 (dotted), 11.25 (dashed), 18.75 (dot
dashed), 22.00 (circles), 25.75 (squares), 29.50 (stars), and 33.25
(crosses).
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FIG. 22. Contact number profiles for the circle at V = 247 cm/s.
Depths (in cm): 3.75 (solid), 7.50 (dotted), 11.25 (dashed), 18.75
(dot dashed), 22.00 (circles), 25.75 (squares), 29.50 (stars), and 33.25
(crosses). (Inset) V = 168 cm/s; depths follow the same convention
as main graph.

practically all contacts on the flat side will disappear, since
there is no projected area perpendicular to the flow. Forces will
only be exerted on the leading point, which barely changes with
V and D when the flow detaches. Finally, this independence
of the lift on V and D explains why the lift on the half-circle
only decreases after it reaches its maximum, positive value.

Let us look at the lift and contact profiles as functions of
depth in Figs. 21 and 22. The main feature of these plots is the
overall increase of both quantities with depth and the familiar
flow detachment, consistent with hydrostatic conditions. Our
results also show that flow detachment can be suppressed at
a given depth for a suitable speed. This is clear from the
inset of Fig. 22, which shows contact profiles for intermediate
speed. At low depths, contacts occur only on the leading side,
φ = [−π/2,π/2]. For deep intruders, we find a nonzero
contact number all over the intruder surface. Our results
suggest we should go to a shallower position, at lower speeds,
in order to see flow detachment.

In Figs. 23 and 24, we show the lift and contact numbers on
the top and bottom sides of the circle as a function of depth.
It is clear that the bottom lift is linear in D for all speeds, and
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FIG. 23. Lift on top (open) and bottom (solid symbols) of the
circle as functions of depth. Speeds (in cm/s): 61.8 (circles), 165
(squares), and 247 (triangles). Lines are guides to the eyes.
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FIG. 24. Contact numbers on top (open) and bottom (solid
symbols) of the circle as functions of depth. Speeds (in cm/s): 61.8
(circles), 165 (squares), and 247 (triangles). Lines are guides to the
eyes.

it changes slower with depth for high drag speeds. The top
lift curves, however, do not suggest unique linear dependence
between lift and depth, except for the V = 247 cm/s curve.
The other two show two distinct linear regimes, one at low and
the other at high speeds. Looking at the contact numbers, we
see that the contact numbers have two distinct regimes with
depth: a fast growth one at low D, and a slower variation one at
higher depths. These results might explain the reason that the
top lift changes behavior at some depth. This is consistent with
previous speed results that showed that when the drag speed
is below V = 227 cm/s, the lift value is affected by changes
in the contact numbers. It also explains why the initial fast
growth of the top contact number with depth does not affect
the lift value.

For the half-circles, we show in Fig. 25 the top and bottom
lifts as functions of depth. We see, again, the familiar depth
independence of the lift on the flat side. In this case, it appears
at high speed and low depth. Again, we can understand
this result in view of the fact that flow detachment can be
suppressed for suitable speed and depth. At low depth and
high speeds, flow detaches. As the depth is increased, this
phenomenon is decreased, and the net lift linearly increases
with D, as seen in Fig. 12. For other cases, the lift force
increases approximately linear on depth.

V. CONCLUSIONS

We presented numerical results of the forces, drag, and
lift, on an intruder dragged horizontally through a hydrostatic
granular packing, as functions of the drag speed V , depth D,
and shape. We saw that the net drag increases quadratically
with V and linearly with D, and is larger for the circular
intruder. The net lift, however, depends nonmonotonically on
both V and D and is lower for the circle. We found that the
sign of the net lift force depends on V and D, as seen on the
results for the half-circle. For the other two shapes, the net lift
was always positive.

This complex behavior can be explained by detachment
of the flow, i.e., decrease in the overall grain-intruder contact
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FIG. 25. Lift on top (open) and bottom (solid symbols) of half-circle (a), and inverted one (b), as functions of depth. Speeds (in cm/s):
61.8 (circles) and 247 (squares).

number. This effect decreases the forces on the intruder. Since
this decrease is not the same on the upper and lower parts of
the intruders with V , in some speed range the lift force on the
lower side grows faster than the one on the upper side, which
increases the net lift. The other effect is also seen; the lift
on the upper part grows faster than the lift on the lower part,
which is consistent with a decrease of the net lift. The effect
of this phenomenon on the flat side of the half-circles is that
all forces on this side are done on the leading point, since the
flow is deviated at this point and barely touches the flat side at
high V . Finally, we see that this effect can be suppressed by a
high depth.

We also showed that the vertical forces on the top and
bottom sides of the intruders follow similar relationships with
V and D as those for the net drag 〈R〉. This is to be expected,
since all forces are contact grain-intruder interactions.

Future possibilities of these studies are on a detailed
description of the forces within the packing as the intruder
is dragged. If we know how the intruder will affect the forces
in the flow, we will be able to predict much more accurately
the beginning of flow detachment and why it does not occur
in the same on both sides of an intruder. In addition, a more
detailed description of the lift on both top and bottom sides

may lead to an empirical force law similar to those of the drag
force obtained in [9,12].

Finally, other shapes might show interesting results as well.
For instance, we observed that if we drag an ellipse, we can also
see a sign inversion for the lift as we saw in the half-circle case.
In addition, this sign inversion seems to be dependent only on
the angle of attack of the ellipse. Obviously, this effect depends
also on eccentricity, speed, and depth. If we understand this
effect, we might be able to design more efficiently robots
that move in granular environments, as those proposed in
[27], as well as understand better how animals locomote in
sand [28].
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