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Nanowire fluidic tweezers have been developed to gently and accurately capture, manipulate, and
deliver micro objects. The mechanism behind the capture and release process has not yet been well
explained. Utilizing the method of regularized Stokeslet, we study a cylindrical nanowire tumbling
and interacting with spherical particles in the Stokes regime. The capture phenomenon observed in
experiments is reproduced and illustrated with the trajectories of micro-spheres and fluid tracers. The
flow structure and the region of capture are quantitatively examined and compared for different sizes
of particles, various tumbling rates, and dimensions of the tweezers. We find that pure kinematic
effects can explain the mechanism of capture and transport of particles. We further reveal the relation
between the capture region and stagnation points in the displacement field, i.e., the displacement for
tracer particles in the moving frame within one rotation of the wire. Published by AIP Publishing.
https://doi.org/10.1063/1.5017753

I. INTRODUCTION

Due to advances in miniature technologies and demands
from industrial and biomedical applications, microfluidic
devices such as valves, pumps, and mixers have been devel-
oped and studied recently. More information can be found
from the review paper by Stone and Kim1 and the references
therein. Tweezers, which capture, transport, and deliver parti-
cles in the microfluids, have drawn attention. A wide range of
methods have been developed to achieve the tweezers’ trap-
ping and transportation functions, utilizing forces based on
optical,2 electrical,3 magnetic,4 and acoustic5 potential fields
or simply fluidic forces.6–8,36 Due to the non-contact and gen-
tle features, the fluidic tweezers are particularly promising for
biomedical applications. To better design and utilize fluidic
tweezers, it is essential to understand the interaction between
a particle and the flow structure, which is a fundamental fluid
mechanics problem.9,10

One of the fluid structures used to interact and to manip-
ulate particles is the microfluidic vortex. By generating a
vortex on a micro-scale, researchers have invented micro-
fluidic devices for centrifuging,11 mixing,12 particle sorting,13

and separating particles from fluids.14 Using corners in chan-
nels is one way to generate vortices. For example, Tanyeri
and Schroeder15 built a single particle manipulation and con-
finement device based on perpendicularly crossing channels.
Such devices often utilize the inertial effect of the particle to
deviate its trajectory from the fluid. Another way to gener-
ate vortices is to rotate an object controlled by an external
magnetic field or ultrasound. These methods have been shown
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to be useful for propulsion and manipulation of particles.6,16

Qualitative force analysis has been done for rotational tweez-
ers by Ye et al.17,18 However, the mechanism for capture has
not been fully explained. Although inertial effect and non-
Newtonian effects have been considered as the mechanisms
for trapping in the previous studies, and such effects could
be responsible for some tweezers, particle manipulations are
possible in Newtonian flows in the Stokes regime.6 Further-
more, the precise capture range and the critical translation
speed of the manipulator have not yet been systematically
investigated.

In this paper, we study a fluidic actuator based on a rotat-
ing nanowire. We build a mathematical model, find the exact
velocity field for the flow generated by a tumbling spheroid
in free space, numerically solve the Stokes flow induced by
a tumbling wire that interacts with a spherical particle, and
examine the mechanism and condition in which the particle
is captured and moving with the wire. We also investigate the
relations between the translation speed, geometric parameters,
and the capture region.

II. MODEL
A. Configuration of the problem

The fluidic tweezers are made of a magnetic nanorod
or nanowire controlled by magnetic fields. In our numeri-
cal model, the nanowire is modeled as a long cylinder with
a length ` and a radius r. The target particle is a rigid
sphere with radius R in the fluid (illustrated in Fig. 1).
The wire is translating with a uniform velocity Uex and
rotating with an angular velocity ωez. Without loss of gen-
erality, the wire is initially placed horizontally in the x–y
plane. The position of the centerline of the wire is prescribed
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FIG. 1. Schematic of the fluid tweezers. The cylindrical nanowire with length
` and cross section radius r is rotating in a horizontal plane with an angular
velocity ωez , while it also is translating with a constant velocity Uex . The
sphere represents the target particle with a radius R in the flow. The black dots
along the nanowire’s center-line and on the surface of the sphere illustrate the
locations of the Stokeslets.

as

x = Rωs ex + U t ex, (1)

where

Rω =
*....
,

cos(ωt) − sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1

+////
-

(2)

is the rotation transformation matrix, and �`/2 ≤ s ≤ `/2. The
velocity of the rod can be computed as

Uw = ωs
[
− sin(ωt) ex + cos(ωt) ey

]
+ Uex. (3)

We consider the particle as neutrally buoyant in the fluid
and that Brownian motion is negligible. Assuming the particle
is centered at xp, the translation velocity at the center is vp, and
the angular velocity about its center isωp, the surface velocity
Up can be computed as

Up = vp + (x0 − xp) × ωp, (4)

for any x0 on the surface of the particle ∂Ωp.
For flows induced by micro-fluid tweezers, the character-

istic Reynolds number is Re = U`ρ/µ, based on the translation
speed, or Re = ρω`2/µ, based on the rotational speed. For
tweezers and particle size below 100 µm, Re is usually much
less than one and the inertial effect is negligible. Therefore,
we assume the flow is in the Stokes regime. Also, we assume
that the fluid is incompressible. Then, the governing equations
are reduced from the Navier-Stokes equations to the Stokes
equations

µ∇2u − ∇p + f = 0, ∇ · u = 0, (5)

where u is the fluid velocity, p denotes the fluid pressure, f is
the external force exerted on the fluid, and µ is the dynamic
viscosity.

The flow is at rest without the wire and therefore the
boundary conditions satisfy

u(x0) = Uw,p(x0),

lim
|x |→∞

u(x) = 0,
(6)

where x0 is on the boundary of the wire ∂Ωw or the boundary
of the particle ∂Ωp.

B. Exact solution for flow induced
by a tumbling spheroid nanowire

For a tumbling rod with a prolate spheroid shape, the exact
solution for the induced flow can be constructed from fun-
damental singularity solutions.19–22,35 Here we consider two
reference frames. In the lab frame x, the rod is tumbling with
uniform translating velocity Uex and rotating with angular
velocityωez. The centerline of the rod is prescribed as (1) and
its velocity is (3). In the body frame xb, the rod is fixed. With-
out loss of generality, we assume the body is along the x-axis.
Then, the centerline of the rod is (xb, yb, zb) = (s, 0, 0), where
�`/2 ≤ s ≤ `/2.

The relation between the body frame xb and the lab frame
x is

x = Rωxb + U t ex, or xb = RT
ω (x − U t ex) . (7)

The relation of the body frame velocity vb and the lab frame
velocity u is

vb = RT
ω (u − Uex) + ω *.

,

0 1 0
−1 0 0
0 0 0

+/
-

xb.

Since u(x) = 0 as |x| → ∞, the equation above gives the
background flow in the body frame

vb(xb) = U
(
− cos(ωt)ex + sin(ωt)ey

)
+ω

(
ybex − xbey

)
, (8)

which is the combination of a uniform flow and a rotation flow.
The boundary conditions become

v(xb,0) = 0, (9)

lim
|xb |→∞

v(x) = vb(xb), (10)

where xb,0 is the on the surface of the rod in the body frame.
The surface of the spheroid rod is described by

x2
b

a2
+

y2
b + z2

b

b2
= 1, (11)

where a is the major semi-major axis and b is the semi-
minor axis of the spheroid. The related focal length 2c and
the eccentricity e are

c =
√

a2 − b2 = ea. (12)

Based on the results of Chwang and Wu,23 we employ a
line distribution of singularities between the foci x = �c
and c. The detailed derivation and a list of singularities
used for this study are provided in the Appendix. For a
background flow (8) past a spheroid rod, the velocity field
is
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u(x) = U1ex + U2ey + ωyex − ωxey − α1

∫ c

−c
uS (x − ξ ; ex) dξ − α2

∫ c

−c
uS

(
x − ξ , ey

)
dξ

+ β1

∫ c

−c

(
c2 − ξ2

)
uD (x − ξ ; ex) dξ + β2

∫ c

−c

(
c2 − ξ2

)
uD

(
x − ξ , ey

)
dξ + χ1

∫ c

−c

(
c2 − ξ2

)
uSS(x − ξ ; ex, ey)dξ

+ χ2

∫ c

−c

(
c2 − ξ2

)2 ∂

∂y
uD (x − ξ ; ex) dξ + χ3

∫ c

−c

(
c2 − ξ2

)
uR (x − ξ ; ez) dξ, (13)

where

U1 = −U cos (ωt), U2 = U sin (ωt),

χ1 =
e2ω

−2e +
(
1 + e2) Le

, χ2 =
ω − e2ω

−8e + 4
(
1 + e2) Le

,

χ3 = ω
2 − e2

−2e +
(
1 + e2) Le

,

and

Le = log

(
1 + e
1 − e

)
.

The singularities are on the location ξ = ξex.
All integrals in the velocity field (13) can be integrated

explicitly and we can use relation (7) to convert velocities
between the body frame and the lab frame. In other words, we
have found the explicit expression of the velocity field.

C. Numerical method for the fluidic tweezers
and particle coupled system

To solve the nanowire coupled with non-zero volume par-
ticles, we implement the regularized Stokeslet method devel-
oped by Cortez.24 The idea of regularized Stokeslets is to
replace the singular force for Stokeslet with a small, smooth,
and concentrated force [f = f0φε (x � xo)] so that the velocity
is defined everywhere, including the location of the force xo.
The regularization parameter ε approximately represents the
radius of the blob. When ε → 0, φε (x � xo)→ δ(x � xo). We
choose the regularized Stokeslet given by Cortez24 and denote
the regularized Green’s function as G(x, xo, ε). The blob is

φε (x) =
15ε4

8π(|x|2 + ε2)7/2
.

The velocity of the flow with a single regularized Stokeslet at
xo is

Us(x; fo) = G(x, xo, ε) · fo

=
1

8π

[
fo

(|x − xo |
2 + ε2)1/2

+
ε2fo

(|x − xo |
2 + ε2)3/2

+
(fo · (x − xo))(x − xo)

(|x − xo |
2 + ε2)3/2

]
.

More details of these formulae can been found in Refs. 24–26.
To solve the problem with the proper boundary condi-

tions, we distribute the regularized Stokeslets evenly along
the center-line of the wire (see Fig. 1). The regularization
parameter on the centerline of the wire, εw , is chosen as the
radius of the wire r. For the particle, regularized Stokeslets
are distributed evenly on the surface of the particle and

locations of the Stokeslets are obtained by using Spheri-
cal Centroidal Voronoi Tessellation (SCVT) and the package
STRIPACK.27,28

At any instantaneous time, the strength F(x) of a regular-
ized Stokeslet is determined by the no-slip boundary condi-
tions on the wire and the spherical particle. The total velocity
induced by all the regularized Stokeslets in the flow is given
by

u(x, t) =
Nw∑
m=1

G(x, xm; εw) · F(xm) +
Np∑

k=1

G(x, xk ; εp) · F(xk),

(14)
where xm is the position of the mth regularized Stokeslet on the
wire, xk is the position of the kth regularized Stokeslet on the
particle, and εp is the regularization parameter on the particle.

Without the finite-sized particle embedded in the flow, the
boundary conditions (6) are applied on the wire only and yield

Nw∑
m=1

G(xi, xm; εw) · F(xm) = Uw(xi), (15)

where xi ∈ ∂Ωw , i = 1, . . ., Nw . These equations can be
rewritten in a matrix form with 3Nw unknown variables. The
linear system is then solved numerically to obtain the regu-
larized Stokeslet strengths Fm = F(xm(t)). Consequently, the
fluid velocity field u(x, t) can be reconstructed everywhere
using (14).

When a finite-sized particle presents in the system, besides
the boundary condition on the wire

Nw∑
m=1

G(xi, xm; εw) · F(xm) +
Np∑

k=1

G(xi, xk ; εp) · F(xk)

= Uw(xi), i = 1, 2, . . . , Nw , (16)

additional boundary conditions u(xk) = Up(xk) (k = 1, 2, . . .,
Np) should also be satisfied. However, the velocities on the
particle Up(xk) are unknowns. By substituting Up with Eq. (4),
we obtain relations

Nw∑
m=1

G(xj, xm; εw) · F(xm) +
Np∑

k=1

G(xj, xk ; εp) · F(xk)

−vp − (x0 − xp) × ωp = 0, (17)

where xi ∈ ∂Ωp, i = 1, . . ., Np. The unknown variables
in Eqs. (16) and (17) are F, vp, and ωp, which add up to
3(Nw + Np) + 6 unknowns. Since Eqs. (16) and (17) correspond
to only 3(Nw + Np) scalar equations, 6 additional equations are
required to determine the system. They can be derived from
the non-inertia approximation of the sphere. Because the iner-
tia is negligible, the total force and total torque on the particle
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are both zero. These imply

Np∑
k=1

F(xk) = 0, (18)

Np∑
k=1

(xk − xp) × F(xk) = 0. (19)

After the force strength F(x) and the rigid body motion for the
spherical particle vp and ωp are determined, the velocity of
the flow can be evaluated with Eq. (14).

D. Nondimensionalization, parameters, and errors

In our simulations, we use dimensionless parameters so
that the length of the wire ` = 1, rotation rateω = �2π, and the
period of the rotation T = 1. As such, the value of U actually
represents the relative time scale between rotation and trans-
lation. In order to compare with the results of the experiment
in Petit et al.,6 the radius of the wire is set to 0.0067 and the
radius of the sphere is set to 0.2. The numbers of regularized
Stokeslet on the particle and on the wire are Np = 150 and
Nw = 94, respectively. Since the wire and its motion have
reflection symmetry in the z = 0 plane, the behavior of a particle
below the tweezers is the same as those in its image position
above the tweezers. Therefore, we only show the results for
the particles or tracers initialized above the wire.

Since the boundary conditions are enforced only at those
discretized points where Stokeslets are centered, relatively
larger errors may occur between the Stokeslet points. Increas-
ing the regularization parameter can decrease such errors but
might introduce more errors in the computed forces.24 The
regularization parameter on the surface of particle is chosen as
0.4 times the estimated average distance between two points,

that is, εp = 0.4
√

4πR2/Np, where the factor 0.4 is a numerical

optimal value for the discretized spherical particle.29,30 For a
sphere at typical positions in the region (�0.5 < x < 0.5, �0.5
< y < 0.5, 0.25 < z < 0.6), the velocity error on a random
point on the sphere is about 4% of the average magnitude of
the velocity on the sphere. A similar test shows that the veloc-
ity error along the wire’s center-line is less than 3%. To test
whether the velocity of the sphere can be sufficiently described
by the Stokeslets, we increased the number of the points on
the sphere to 400 and found only 0.2% difference from the
150-point case.

III. RESULTS

With our model, we examine the flow induced by the fluid
tweezers, focus on the spherical particle captured by the fluid
tweezers, and attempt to explain the capture mechanism.

Before we couple non-zero volume particles with the
tweezers in the system, we examine the fluid tracers in the
flow induced by the wire, for which the exact velocity field
is obtained. The movement of the fluid tracers in the flow is
shown in Fig. 2 (Multimedia view). We find that some parti-
cles starting in the vicinity of the wire follow the motion of
the wire and some fall behind. Little motion is observed in the
vertical (z) direction.

By examining the trajectories of individual spherical par-
ticles, we find that their trajectories are similar to those of
the tracer particles [Fig. 3, (Multimedia view)]. The capture
depends on the initial position of the particle and also on the
translation speed. Note that since we normalize the angular
velocity of the rotation of the wire, the effect of the wire’s
rotation speed is represented by the effect of the translation
speed. The typical trajectory of a captured particle exhibits a
trochoid-like curve with small wiggles, as the red, orange, and
green curves show in Fig. 3 (Multimedia view). The shape of
the curves depends on the particle’s initial position and the
translation speed of the wire. When the translation speed is
large, the particle may deviate from the prescribed route of the
wire. The trajectories of the trapped particles are almost pla-
nar, while the untrapped particle moves along a trajectory [the
blue curve in Fig. 3(b) (Multimedia view)] with a relatively
large movement in the z direction, perpendicular to the plane
of the motion of the wire.

To distinguish the successful capture cases of a particle
from the no-capture cases and quantify the capture region, we
measure the horizontal movement of the spheres or tracer par-
ticles when the wire translates over a specified distance. We
choose a total distance of 8, which corresponds to a total time
t = 8/U. If the displacement of the particle in the forward (x+)
direction relative to the rod center is less than 1, we consider
the particle has been captured (Fig. 4). The results with a larger
displacement are qualitatively the same and will be discussed
in Sec. IV. As shown in Fig. 4, a particle with a radius of 0.2
and starting 0.3 above the center of the wire is captured when
the translation speed is below about 0.13. This is consistent
with the experiment reported in the previous study by Petit
et al.6 that a 6 µm diameter particle can be captured by a
15 µm long wire when the wire is rotating at 54 Hz and trans-
lating at as high as 87 µm/s, which corresponds to a lower
limit of nondimensionalized maximal capture speed 0.11. The
speed is marked as the green line in Fig. 4.

To quantify the condition in which the particles are cap-
tured, we systematically vary the initial condition of the spher-
ical particle for three translation speeds of the wire and two
particle sizes. Since the flow is symmetric, we only examine
the initial position in the z+ half space, i.e., above the plane
where the wire is, for Fig. 5. For the tracer particle (R = 0),
the initial positions are considered in a box (�0.65 ≤ x ≤ 0.9,
�0.55 ≤ y ≤ 1.5, 0.05 ≤ z ≤ 0.75), with a grid resolution of
0.05 in all three dimensions. For the particle with a radius
of 0.2, the box with z ≥ 0.25 is considered to avoid overlap-
ping between the wire and particles at the initial state. The
function isosurface in MATLAB (ver. 8.0.0.783, Mathworks,
Inc.) is used to find the isosurface with a horizontal movement
between 7 and 9 in the x+ direction. Then, inside the surface
is the capture region. The space in Fig. 5 is color coded so
that the position of the surfaces can be compared point by
point.

We find that overall the capture regions have pear-like
shapes, as shown in Fig. 5. The cross sections in the x–y plane
are pointier in the y+ side. The green pointy region connects to
a thin and scattered region, which phases out between the y+
and x+ directions. The capture region shrinks as the translation
speed U increases. In the region both accessible by the tracer
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FIG. 2. Snapshots of fluid tracers in the Stokes flow generated by the tumbling wire. The translation speed of the wire is U = 0.08. These fluid tracers are
initialized on a flat plane above the wire at z = 0.3. The fluid tracers are colored according to their initial distance from the z-axis. (a) and (b) top view and side
view of the initial setup; (c)–(e) top views at t = 5, 10, and 15, respectively; (f) and (g) top view and side view at t = 20. The red thick lines represent the centerline
of the wire. Multimedia view: https://doi.org/10.1063/1.5017753.1

particles and spherical particles with radius R = 0.2, the capture
regions are nearly identical. Because a larger range of z is used
for the tracer particle, the capture region for the tracer particle

FIG. 3. Top view (a) and side view (b) of the trajectories of a spherical particle
in the Stokes flow generated by a tumbling wire at different translation speeds
U = 0.08, 0.10, 0.12, and 0.15. The center of the sphere is initialized at (0.2,
0.05, 0.3) and its radius is R = 0.2. The total time for the simulations is 30.
The dashed line indicates the position of the wire with the smallest U = 0.08 at
t = 30. The solid markers (red diamond, orange dot, and green square) represent
the center of the wire at t = 30 for corresponding trajectories. The consistent
color scheme is used to represent different velocities for the trajectories and
the centers of the wire. The center of the wire for the largest translation speed
U = 0.15 is outside the plotting window. Different scales are adopted for the
vertical axes in (a) and (b) to make the trajectories observable. Multimedia
view: https://doi.org/10.1063/1.5017753.2

in the second row may look bigger than that for the sphere in
row 1 in Fig. 5.

Besides comparing the capture region for the passive
tracer particle, we also examined the capture region of spheres
by a wire with the wire’s radius doubled (i.e., r = 0.0134).
From row 1 and row 3 in Fig. 5, we find that the capture region
expands in all three dimensions slightly.

To further explore the influence of the capture on the par-
ticle and wire, we examine the rotation and the stress of the

FIG. 4. The displacement of the particle in the x direction (red circles) as
a function of the translation speed of the wire when the center of the wire
reaches x = 8. The particle is initially placed at (0, 0, 0.3). The dashed red
line is used to guide the eyes, the black dotted line indicates the displacement
of the wire, and the green line indicates the speed at which capture has been
achieved experimentally by Petit et al.6

https://doi.org/10.1063/1.5017753.1
https://doi.org/10.1063/1.5017753.2
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FIG. 5. Capture regions of different dimensions of the wire and particle (rows) and the translation speeds (columns) of the wire. The boundaries of the capture
region are shown above z = 0.25 as a colored surface for a rigid sphere and the boundaries above z = 0.05 are shown for a tracer particle. The color [i.e., (R, G, B)
value] on the surface depends on the local position [i.e., (x, y, z)].

sphere and the force distribution on the tweezers (Fig. 6). We
find that the rotation of the sphere about its center is mainly in
the �z direction, which is the same as the rotation of the wire.
There are two frequencies in the rotation [Figs. 6(b) and 6(c)].
The higher frequency is twice the frequency of rotation of the
wire. This high frequency is due to the periodic motion of the
two ends of the wire relative to the sphere. The lower frequency
corresponds to the periodic motion of the sphere relative to the
center of the wire. For the stress σ on the sphere, we decom-
pose it into the normal component p, which is normal to the
surface, and the shear stress τ, which is parallel to the surface.
The normal stress p is negligible compared to the shear street τ.
Taking the average over the surface of the sphere, the magni-
tude of the shear stress is about 1.5 in dimensionless units.

The flow exerts the largest shear stress on the sphere near the
close encounter point for the wire and the sphere.

Even though the wire and sphere are coupled in the sys-
tem, the total torque T t and net force F t on the wire are nearly
independent of the presence of the sphere [Fig. 6(c)]. The mag-
nitude of the torque is about 1.5 in dimensionless units and is
about 3× 10�18 N m using experimental parameters. The com-
ponent of the total force in the translation direction (Ft

x) is about
0.15 in dimensionless unit or 2.5 × 10�14 N in physical units.
For a wire with a doubled diameter, the torque and net force on
the wire are both increased by about 25%. Such an increase is
consistent with the slender body theory that the force on a slen-
der rod is proportional to the slenderness parameter ln�1(`/r)
with a fixed velocity.31

FIG. 6. Stresses and forces on the sphere and wire. (a) The force on the sphere and the wire exerted by the fluid at an example time t = 4.2. The color on the
sphere represents the magnitude of the total stress. The red arrow represents the rotation vector ωp. (b) The average magnitude of the stress σ, the normal
component p of the stress, the parallel component τ of the stress, and the three components of the rotation of the sphere as a function of time. r = 0.0067,
U = 0.08. (c) The magnitude of the total torque T t and the total force in the x direction Ft

x as a function of time for different configurations. “2r” refers to the
case where r = 0.0134. R = 0.2 and U = 0.08.
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IV. DISCUSSION

To reveal the capture mechanism and understand the cap-
ture region, we examine the displacement for tracer particles
in the moving frame within one period of rotation of the wire
[i.e., the vector field d = xp(t = 1) � xp(t = 0) in the mov-
ing frame]. Since the capture is insensitive to the particle size,
we consider the displacement of a tracer particle in the body
frame translating with the center of the wire. The displacement
field can be approximated as the combination of the translation
displacement and a vortex. When the particle is far from the
wire and the influence of the wire’s rotation on the particle is
weak, the displacement field is simply the uniform displace-
ment �UT. A rotating wire generates a vortex in the fluid with
maximal linear velocity of the fluid near the end points and
the velocity decreases with increasing z. Note that the vortex
has some detailed but complex features: (1) Due to the non-
slip boundary condition, the fluid near the surface of the wire
always moves with the wire and therefore the displacement
is nearly zero near the surface. (2) The displacement field is
not exactly axis-symmetric since the initial orientation of the
wire defines a direction. Since the motion of the wire is in the
x–y plane and the diameter of the wire is very small compared
to the length, the displacement field is also nearly planar. The
displacement in the z direction is negligible (<0.007 in the
z = 0.25 plane) in determining the overall capture region.
Therefore, we focus on the displacement field in the x–y plane
at different heights z.

When the translation speed U is small compared to the
linear velocity of the wire and z is small, the displacement
field has two stagnation points along the y+ axis. As the linear
shear velocity generated by the rotation of the wire increases
from zero from the center of the wire and then decreases to
zero as the distance goes to infinity, the two stagnation points
appear where the forward (x+) velocity is canceled out by
the uniform backward displacement. Since the only region
with forward velocity is between these two stagnation points,
the stagnation points indicate the size and the position of the

capture region. The stagnation point with a smaller y value is a
stable stagnation point. A particle starting between these two
stagnation points encircles this stable stagnation point with
an oval shape [green curves in Figs. 7(a)–7(c)]. The stagna-
tion point with a greater y value is an unstable saddle point.
A particle that starts from the stable manifold in the upstream
(x+, y+) takes an infinite time to reach the saddle point for a
finite distance. Thereafter, the particle appears to be captured.
Because the trajectory of a point near the stable manifold is sen-
sitively dependent on the initial position, the apparent capture
is sensitive to initial positions and numerical errors. There-
fore, the particle captured is scattered in this region. When the
starting point is sufficiently far from the saddle point in the y+
direction, the uniform translation dominates and no capture
can occur [the magenta curves in Figs. 7(a)–7(c)]. A simi-
lar simplified 2D kinematic model of atmospheric or oceanic
flow was analyzed and similar capture regions were found by
Flierl.32

As shown from the analysis, the particles in the scat-
tered region near the stable manifold of the saddle point are
not truly captured. They gradually fall behind the rod as the
system evolves for a longer time and such spurious capture
regions shrink. Figure 8 shows a comparison of the capture
regions when the rod travels with different distances, i.e., with
a different total time for the simulations.

When U or z increases, the two stagnation points move
closer, and eventually merge and disappear (Fig. 7). Since the
distance between the two stagnation points roughly determines
the radius of the capture region in a z cross sectional plane, the
decrease of the distance as z increases or U increases explains
the drop-like shape of the capture region and the loss of vol-
ume as U increases. Essentially, canceling the displacement
in the forward direction dx in the vortex by �UT determines
the existence of the capture region. We examine the maximal
displacement in the x direction in cross sections of the vortex
as a function of z [Fig. 7(d)]. Such a plot indicates the height of
the capture region at a given U and outlines the capture region
and the non-capture region. As shown in Fig. 7(c), the heights

FIG. 7. Displacement field analysis for tracer particles. (a)–(c) are displacement fields in the horizontal plane, in a moving frame translating at the same speed
of the center of the wire. (a) and (b) are at z = 0.25 with the translation speed U = 0.08 and U = 0.12, respectively. (c) is with U = 0.08 and at z = 0.45, a different
height to (a). Blue arrows represent the displacement. The red dots indicate the stagnation points. The magenta, green, and black trajectories in (a)–(c) are three
representative tracer particles trajectories over a time period of 100. (d) is the capture diagram predicted by displacement field analysis. The red curve is the
maximal displacement in the x direction generated by a rotating wire with r = 0.0067 at different heights z. Bounded by the red curve, the shaded region is the
predicted region at which height z and translating speed U no capture occurs. The green dotted curve represents the maximal displacement to height relation for
a thicker wire with r = 0.0134. The blue asterisks mark the observed maximal z coordinate of the capture regions and the respective U in the first row in Fig. 5.
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FIG. 8. Comparison of the capture regions when the wire
travels a distance of 8 (a) and 16 (b). R = 0, r = 0.0067,
and U = 0.05.

of the capture regions (asterisks) lie closely on this curve.
With a thicker wire, the curve (green dotted) is shifted slightly
upward, which is consistent with the larger capture regions by
the thicker wire.

As the fluidic tweezers often intend to gently manipulate
biological cells, we compare the rough magnitudes of resultant
stresses and forces on the spherical particle with the biologi-
cal values. With the parameters in Petit et al.,6 the forces and
stresses on the sphere are in general gentle for biological cells.
The magnitude of the stress on average is about 0.08 Pa on
the sphere. Such a magnitude of stress is sufficient to induce
intracellular Ca2+ or Ka+ channel activation (0.02-0.4 Pa and
0.02-1.65 Pa, respectively), but unlikely to induce other biolog-
ical response (typically >0.5 Pa) if the sphere is an endothelial
cell.33 The stretching force is around 10 pN; such a force is
not sufficient to generate a large deformation of cells such as
blood cells, who require a force in the magnitude of 100 pN
to deform significantly (>10% diameter).34

This study is limited to purely fluid mechanical effects
of tweezers in free space. Since there are no other forces to
overcome for the particle, the kinematic effects are domi-
nant and thoroughly examined. Future studies might introduce
other effects from real-life applications, such as forces from
the contact between the particle and the surface, the grav-
ity forces, buoyancy, boundaries of the fluid, and Brownian
motion for particles with smaller sizes (typically ≤1 µm).
When the immersed particle is no longer a sphere, the trajec-
tory of a particle may depend on both its shape and its initial
orientation. Our preliminary study suggests that the capture
regions are qualitatively similar when the sphere is replaced
by an oblate or prolate spheroid. However, the details of the
capture region depend on the particle’s shape and initial orien-
tation in a non-trivial way. When the inertial force plays a role
in the flow beyond the Stokes regime, the flow fields change
qualitatively. Due to centrifugal forces, outward motions are
expected as the sphere and fluid rotate. As such, the flow may
become fully three-dimensional and the stagnation points in
the planar displacement field are not sufficient to describe the
capture region. Thorough investigations on these effects will
be carried out in the near future.

V. CONCLUSIONS

In conclusion, we have studied a tumbling nanowire that
manipulates micro-objects. For the spheroid tweezers, we
derive an exact velocity field for the flow with the singularity
method;23 in the presence of a neutrally buoyant spherical par-
ticle, we study the flow with the regularized Stokeslet method.

For a particle in a viscous/micro fluid, the kinematic effect of
the vortex generated by the fluidic tweezers is responsible for
the capture of the particles. The trajectories of the particles can
be understood from the combination of a vortex and a uniform
translation. The stagnation points in the combined displace-
ment field provide key information on the shape and size of
the capture regions. We found that the behavior of a finite-
size sphere is nearly the same as a tracer particle for typical
sizes reported in the experiments. Furthermore, the external
forces and torques to drive the nanowire vary little for different
particles.
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APPENDIX: EXACT SOLUTION FOR A SPHEROID
TUMBLING IN FREE SPACE

When the rod is in the shape of a prolate spheroid, the
exact solution for the Stokes flow generated by the spheroid is
derived in this appendix. First, we provide a list of singularities
used for this study. The Stokeslet uS is a fundamental solution
of the Stokes equation for a single point force,

µ∇2u + fS = ∇p,

∇ · u = 0,
(A1)

where fS = 8πµαδ(x), α is the strength of the singularity
located at the origin, and δ(x) is the 3D Dirac delta function
at the origin. The explicit formulae of Stokeslet are

uS(x; α) =
α

|x|
+

(x · α)x
|x|3

,

pS(x; α) = −2µ
x · α
|x|3

,

where x = (x, y, z).
Due to the linear property of the Stokes equations, a

derivative to any order of uS and pS(x; α) is also a solution of
(A1) with corresponding derivative of fS. The Stokes doublet
is

uSD(x; α, β) = −(β · ∇)uS(x; α)

=
(β × α) × x
|x|3

−
(α · β)x
|x|3

+ 3
(α · x)(β · x)x

|x|5
.
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The symmetric component of a Stokes doublet is a stresslet

uSS(x; α, β) =
1
2

[uSD(x; β, α) + uSD(x; α, β)]

= −
(α · β)x
|x|3

+
3(α · x)(β · x)x

|x|5
.

The antisymmetric component of a Stokes doublet is Rotlet or
couplet

uR(x;γ) =
1
2

[uSD(x; β, α) − uSD(x; α, β)]

=
1
2
∇ × uS(x;γ) =

γ × x
|x|3

,

where γ = α × β. A potential doublet is

uD(x; δ) =
1
2
∇2 × uS(x; δ) = −

δ

|x|3
+

3(δ · x)x
|x|5

,

where δ is the doublet strength.
In the general body frame, the major axis of the prolate

spheroid is along the x-axis. The equation of the spheroid rod
is

x2

a2
+

y2 + z2

b2
= 1, (A2)

where a is the major semi-major axis and b is the semi-
minor axis of the spheroid. The related focal length 2c and
the eccentricity e are

c =
√

a2 − b2 = ea. (A3)

From the results of Chwang and Wu,23 by employing a
line distribution of Stokeslets and potential doublets between
the foci x = �c and c, the velocity field of uniform flow U1ex

+ U2ey past a prolate spheroid is

u(x) = U1ex + U2ey −

∫ c

−c

[
α1uS (x − ξ ; ex)

+ α2uS

(
x − ξ , ey

)]
dξ +

∫ c

−c

(
c2 − ξ2

)
×

[
β1uD (x − ξ ; ex) + β2uD

(
x − ξ , ey

)]
dξ, (A4)

in which the coefficients are

α1 =
2β1e2

1 − e2
=

U1e2

−2e +
(
1 + e2) Le

,

α2 =
2β2e2

1 − e2
=

2U2e2

2e +
(
3e2 − 1

)
Le

,

and

Le = log

(
1 + e
1 − e

)
.

The location of the singularities is ξ = ξex.
For shear flow ωyex past the spheroid, the velocity field

is23

u(x) = ωyex +
∫ c

−c

(
c2 − ξ2

) [
α3uSS(x − ξ ; ex, ey)

+ γ3uR (x − ξ ; ez)
]
dξ + β3

∫ c

−c

(
c2 − ξ2

)2

×
∂

∂y
uD (x − ξ ; ex) dξ, (A5)

where

γ3 = ω
1 − e2

−2e +
(
1 + e2) Le

,

α3 =
4e2

1 − e2
β3 = 2e2γ3

−2e + Le

2e
(
2e2 − 3

)
+ 3

(
1 − e2) Le

.

For shear flow ω′xey past a spheroid, the velocity field is

u(x) = ω′xey −

∫ c

−c

(
c2 − ξ2

) [
α′3uSS(x − ξ ; ex, ey)

+ γ′3uR (x − ξ ; ez)
]

dξ − β′3

∫ c

−c

(
c2 − ξ2

)2

×
∂

∂x
uD

(
x − ξ ; ey

)
dξ, (A6)

where

γ′3 = ω
′ 1

−2e +
(
1 + e2) Le

,

α′3 =
4e2

1 − e2
β′3 = e2γ′3

−2e +
(
1 − e2

)
Le

2e
(
2e2 − 3

)
+ 3

(
1 − e2) Le

.

Therefore, for a background flow (8) past a spheroid rod,
the velocity field is the sum of velocities (A4)–(A6) and we
get (13) with

χ1 = α3 − α
′
3, χ2 = β3 − β

′
3, χ3 =

(
γ3 − γ

′
3

)
.
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