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Introduction

Undulatory locomotion is a common way for animals 
to move in various environments (e.g. spermatozoa 
in water [1], sandfish in sand [2], snakes on land [3, 
4], and fish in water [5], for reviews, see [6–8]) and a 
popular mode of locomotion for bio-inspired robots 
[9–11]. This type of locomotion consists of bending 
the body or some portion of the body to form a 
traveling wave in the direction opposite to the motion 
direction to generate propulsion. For organisms in 
environments dominated by resistive forces, such as 
spermatozoa swimming at low Reynolds numbers 
(Re) and snakes slithering on the ground, how the 
propulsive forces from the environments are generated 
is quite well understood [7, 12].

To bend the body and generate propulsion, inter-
nal torques (bending moments) are required to over-
come both the restoring forces and damping forces of 
the body and the external forces from the resistance of 
surrounding media. For macroscopic animals such as 
eels and snakes, the internal torques are generated by 
muscle forces acting on the body. Therefore, in previ-

ous theoretical and computational studies, spatio-tem-
poral torque patterns were used to explain and predict 
muscle activation patterns [13–15]. Ongoing inter-
disciplinary research over the past several decades has 
provided a general overview of the torque and muscle 
activation: they both exhibit traveling wave patterns 
from head to tail. However, the waves of the muscle 
activation and the torque travel faster than the wave of 
the curvature, which is a phenomenon known as neu-
romechanical phase lags [5, 16]. Consequently, muscles 
activate after they begin to shorten in the anterior part 
of the body, and muscles begin to activate before they 
begin to shorten in the posterior part of the body.

By imposing kinematics and considering contrib
utions from the resistance of the environment and 
the passive body properties of fish (e.g. saithe and 
lamprey), qualitative agreements between predicted 
torque patterns and muscle activation patterns have 
been achieved [13–15]. For the relatively simple case 
of the sandfish lizard swimming in sand, where resis-
tive forces dominate and the body is nearly uniform, a 
quantitative agreement has been obtained using resis-
tive force theory (RFT) [17]. However, how the torque 
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Abstract
In undulatory locomotion, torques along the body are required to overcome external forces from 
the environment and bend the body. These torques are usually generated by muscles in animals and 
closely related to muscle activations. In previous studies, researchers observed a single traveling wave 
pattern of the torque or muscle activation, but the formation of the torque pattern is still not well 
understood. To elucidate the formation of the torque pattern required by external resistive forces 
and the transition as kinematic parameters vary, we use simplistic resistive force theory models 
of self-propelled, steady undulatory locomotors and examine the spatio-temporal variation of 
the internal torque. We find that the internal torque has a traveling wave pattern with a decreasing 
speed normalized by the curvature speed as the wave number (the number of wavelengths on the 
locomotor’s body) increases from 0.5 to 1.8. As the wave number increases to 2 and greater values, 
the torque transitions into a two-wave-like pattern and complex patterns. Using phasor diagram 
analysis, we reveal that the formation and transitions of the pattern are consequences of the 
integration and cancellation of force phasors.
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pattern is formed and whether the pattern is always a 
traveling wave are still open questions.

Another approach for studying the mechanics 
of undulatory locomotion is to start with the inter-
nal forces/torques and observe the kinematics as a 
result of the couplings between the internal drives, 
passive body properties and external environments. 
Two closely related kinematic parameters are the 
wavelength and the wave number (the number of 
wavelengths on the locomotor’s body), which, in 
reality, vary in different species and for the same 
species in different environments (table 1). For 
example, the wavelength decreases as the viscosity 
increases in nematodes and spermatozoa [19, 22]. 
By imposing a neuron activation pattern, muscle 
forces, or a relationship between internal shear force 
and curvature, previous studies showed the trend 
of decreasing wavelength in spermatozoa and fish 
swimming when the relative strength of the exter-
nal resistance to the internal driving forces/torques  
is reduced [23–25]. However, how the variations in 
internal torque, kinematics and other components 

interact with each other is still not well understood.
In robots using undulatory gaits, torques are gener-

ally generated directly by motors (e.g. [26]), although 
new actuation mechanisms are emerging [27–29]. 
Torque is also a convenient way for detecting unex-
pected forces and avoiding damage to robots [30]. A deep 
understanding of the features of torques such as their 
magnitudes, power output, and phase relationships with 
curvature in various configurations and environments is 
useful for designing driving systems [31, 32].

Here, we consider steady forward undulatory 
locomotion in resistive-force-dominated media with 

simple kinematics and body shape. We show the basic 
torque pattern and its transitions to new patterns as 
the wave number increases. Further analysis reveals 
the formation of the torque pattern and the underlying 
mechanism of the transitions.

Model

We consider an undulatory locomotor bending its 
slim and uniform body as a traveling serpentine 
wave in a plane (figure 1). We use body length as unit 
length and one undulation period Tp as unit time. The 
curvature is prescribed as κ = Aξ sin[2π(ξs + t)], 
where s ∈ [0 1] is the arc length measured from the tail, 
A controls the undulation amplitude relative to the 
wavelength, ξ is the wave number, and t is the time. 
The speed of the curvature wave becomes vκ = 1/ξ. A 
is set to 7.54, which gives an amplitude-to-wavelength 
ratio (≈0.24) that is close to experimentally observed 
ratios [1–3]. For every time instant, we use a body 
frame in which the tail end is at the origin and pointing 
toward the x-axis. The tangent angle of a segment at 

s to the x  +  axis can be computed by integrating the 

curvature along the body: θ(s) =
∫ s

0 κdl. The position 

of the segment can be computed as r(s) = (x, y) =  

(
∫ s

0 cos(θ)dl,
∫ s

0 sin(θ)dl). By taking the time deriv
ative, the velocity vb of a segment relative to the tail end 
can be computed. Assuming that the tail end is moving 
at velocity vtail and rotating at angular velocity ω, the 
velocity at the body position s in the lab frame becomes 
v = vb + vtail + ωez × r.

To determine the motion of the body and the 
distribution of the force on the body, we use an RFT 

Table 1.  Wave numbers observed in nature.

Organism Spermatozoon Nematode Snake Eel Scup Sandfish

Wave numbera 1.25–1.4 0.55–1.31 1.60 (on ground), 3.5 (in sand) 1.7 0.65 1.0

Source [1, 18] [19, 20] [3, 21] [5] [5] [2]

a When only amplitude and wavelength are given in the reference, we assume that the motion is sinusoidal and approximated 

the wave number as ξ = L/
∫ λ

0

√
1 + B2 sin2 xdx , where L is the body length, B is the undulation amplitude, and λ is the 

wavelength.

F F
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v
v

locomotion
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Figure 1.  Diagram of the model. The black curve represents the body, the magenta arrows represent velocities, and the green arrows 
represent forces from the medium. The black dot is a representative point on the body at which the internal torque (T) is calculated 
from the forces in the dashed box. The sign and arrow indicate the direction of the torque. ξ = 1.5, A  =  7.54, and t  =  0.
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model similar to those in [3, 17]. In the RFT model, the 
body is divided into infinitesimal segments. Assum-
ing that the force (F(s)) experienced by one segment is 
independent of other segments, the force can be calcu-
lated based on the geometry, orientation, and velocity 
of the segment. The perpendicular and parallel comp
onents of the force on a segment can be written as 
F⊥(v⊥, v‖) and F‖(v⊥, v‖), respectively, where v⊥ and 
v‖ are the perpendicular and parallel components of 
the segment velocity v. We first consider the simplest 
case, in which the head drag is negligible and the forces 
are from viscous drag: F⊥ = C⊥v⊥ and F‖ = C‖v‖, 
where C⊥ = 2 and C‖ = 1 are the drag coefficients for 

a very thin cylinder [33]. The total external torque on 

the body can be computed as Ftotal =
∫ 1

0 F(l)dl and 

Ttotal = ez

∫ 1
0 r(l)× F(l)dl. We assume that inertia is 

negligible, which is a good approximation for micro-
swimmers in fluids, crawlers on land, and swimmers in 
granular materials [1–3]. Under this assumption, the 
resultant net force Ftotal and the net torque Ttotal related 
to the tail (reference) frame are both zero, from which 
vtail and ω can be determined. The motion and force 
distributions on the body are shown in supplementary 
video S1 (stacks.iop.org/BB/13/046001/mmedia), and 
the MATLAB scripts of the computation are provided 
in the supplementary materials.

To compute the internal torque (T) required 
to overcome the external forces at a point on the 
body, we analyze the torque balance on the ante-
rior side of the body at that point and simply find  

that T(s) = −Te(s) = −
∫ 1

s [r(l)− r(s)]× F(l)dl  (see 

figure 1 for an example), where Te is the total external 

torque from the anterior side of the body. Integrat-
ing over the posterior side of the body gives the same 
results. To compute the wave speed of the torque, we use 
the fitting function 

√
2〈T(s)〉 sin[2π(s/λT + t) + φT ], 

where 〈T(s)〉 is the standard deviation of the torque at 
s, λT  is the wavelength of the torque wave along the 
body, and φT  is a fitting parameter for the phase. The 
〈T(s)〉 term is used to capture the variation in torque 
amplitude and the prefactor 

√
2  comes from the ratio 

between the maximum and the standard deviation of 
the sine function. The fitting parameters λT  and φT  are 
obtained from the best fitting of the torque. The speed 
of the torque wave is defined as vT = λT/Tp = λT  and 
the speed ratio of the torque wave to the curvature 
wave is vT/vκ = λTξ.

Results

To focus on the torque pattern, we normalize the 
torque by its maximum value for each wave number 
ξ. We find that the torque exhibits a traveling wave 
pattern for ξ < 1.8 (figures 2(a)–(d)). In this regime, 
the amplitude of the torque is smaller near the ends 
and greater in the middle. As in previous studies, the 
torque wave travels faster than the curvature wave, 
and different phase lags between the curvature and the 
torque along the body are observed. When ξ approaches 
2, the magnitude of the torque in the middle of the body 
suddenly decreases, and a pattern of two apparently 
separated traveling waves forms (figure 2(e)); each 
wave is similar to a wave with ξ = 1 and takes half of 
the body. For ξ > 2, the two waves merge as the wave 
direction near the middle of the body becomes the 
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Figure 2.  The internal torque as a function of body position and time for different wave numbers. The magnitude of the torque is 
normalized by the maximum torque and represented by color. The solid and dashed lines indicate the maximum and minimum 
curvatures, respectively. The red dotted box in (e) indicates the torque pattern that appears similar to the pattern in (b). The green 
and blue arrows indicate the local waves traveling posteriorly and anteriorly, respectively. A  =  7.54
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opposite direction of the curvature wave. The torque 
pattern is no longer one or two traveling waves (figure 
2(f)). Up to at least ξ = 11, similar transitions occur by 
adding one additional traveling wave pattern near the 
middle of the body when ξ reaches integer numbers. 
See supplementary video S2 for torque patterns with 
smaller ξ increments.

The speed of the torque wave normalized to the 
speed of the curvature decreases from 5.2 to 1.3 as the 
wave number increases from 0.5 to 1.8 (figure 3(a)). 
This result is consistent with the results of previous 
studies, namely, the muscle activation is nearly syn-
chronized for short wavelengths [5]. The fit of a sin-
gle traveling wave is poor when ξ > 1.8; therefore, the 
wave speed is not defined and shown in figure 3(a).

The energy output per cycle required to over-
come the external force at each point on the body is 
computed by integrating the power over a cycle, i.e. 

W =
∫ 1

0 Tκ̇dt . The decrease in the phase difference 

between T and κ̇ and the decrease in the amplitude of 
T at the middle as ξ increases result in a more uniform 
distribution of the energy output over the body (see 
the blue line in figure 3(b)). When ξ = 2, the instan-
taneous power and energy output of the middle seg-
ment are zero. As ξ further increases to 2.3, the power 
of the middle segment becomes negative, which means 
that the energy generated by other parts of the body is 
transferred to this part.

A few variation are tested to evaluate the influ-
ences of the external forces and kinematics on the 
torque pattern and transitions. First, two additional 
types of resistive force laws obtained in previous 
experiments are considered: forces for granular media 
are described by F⊥ = Cn sin[arctan(γ sin(φ))] 
and F‖ = [Cf cos(φ) + Cl(1 − sin(φ))], where 
Cn  =  5.57, Cl  =  −1.74, Cf  =  2.30, γ = 1.93, and 
φ = arctan(v⊥/v‖) [34]. These force laws are empiri-
cal fitting functions for an aluminum cylinder dragged 
with different orientations in 3 mm glass beads. 
For anisotropic frictional forces, F⊥ = µtv⊥/|v|  
and F‖ = [µf H(v‖) + µb(1 − H(v‖))]v‖/|v|, where 
µf = 0.3,µb = 1.3µf  and µt = 1.8µf  are the friction 
coefficients in the forward, backward, and normal 
directions, respectively [3]. H(x) is the Heaviside step 

function. Since we focus on the torque pattern and 
normalize the torque by its maximum value, the abso-
lute magnitudes of the forces are irrelevant here. These 
force laws and coefficients are obtained by measuring 
the frictional forces while unconscious snakes slide on 
clothes at different orientations. The torque pattern is 
qualitatively the same when the force laws are replaced 
by those for granular and frictional environments, 
and only subtle differences are observed (figures 4(a) 
and (b)). We also compute the force distribution 
using Lighthill’s elongated body theory (EBT) where 
only the lateral inertial forces from the fluid are con-
sidered (the derivation is provided in the supplemen-
tary information) [35]. The inertial forces considered 
in the EBT give a torque pattern that is similar to that 
from the RFT, albeit with a phase shift of +π/2 (1/4 
period) (figure 4(d)).

To study the effect of undulation amplitude, we 
increase the amplitude to A  =  12.57, at which the 
segments nearly overlap. Surprisingly, we find that 
the torque pattern is insensitive to amplitude (see 
figure 4(d) and supplementary Video S9). When the 
amplitude increases linearly toward the tail, simi-
lar transitions occur, albeit at a greater wave number 
(figure 4(e)). Since interactions between segments 
through the medium are neglected, the results from 
the amplitude variations only include the geometric 
effects. An example case with head drag is also exam-
ined (figure 4(f)). Based on an experiment on bull 
spermatozoa, the head is approximated as a sphere 
with isotropic drag, and the drag coefficient is chosen 
such that the head drag is 58% of the body drag when 
the body is straight and moving perpendicular to its 
axis [36], i.e. Fh = 0.58C⊥v(1). The resulting torque is 
significantly larger for the anterior half of the body and 
the transition of torque to the two-wave pattern occurs 
at a smaller wave number.

To elucidate the mechanism underlying the trans
ition of the torque, we analyze the phases of the torque 
at the middle point of the body and at a point infinitely 
close to the head as examples (figure 5). In a previous 
study [17], the torque at the middle point was roughly 
decomposed into three parts to explain the neurome-
chanical phase lag. Here we use a more quantitative 
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Figure 3.  The speed of the internal torque wave normalized by the speed of the curvature wave as a function of the wave number (a) 
and the energy per cycle required as a function of the body position for different wave numbers (b).
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tool–phasor diagram–to visualize and analyze the 
relationships among the phases of curvature, force and 
torque.

Further simplification is needed prior to the 
analysis. Since the torque pattern is not sensitive to  
amplitude, a small amplitude (A  =  0.6) is used such 
that the locomotor is nearly a straight line on the x axis 
undulating in place. In this case, only the lateral dis-
placement ( y ) and lateral forces (Fy ≈ F⊥) need to be 

considered and the longitudinal forces (≈F‖) are neg-

ligible. Then the equation for computing the torque at 

position s can be simplified as T(s) = −
∫ 1

s (l − s)Fydl . 

Prior to the analysis, we also note that the spatio-tem-
poral patterns of the lateral force are affected by the 
requirements of force and torque balances. For ξ = 0.5, 
a wave number less than 1, the phase difference between 
the lateral forces at the head and at the middle point is 
greater than π/2, which is the phase difference of the 
curvatures at these two points (figure 5). This result 
can be understood by considering the balance of the 
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Figure 4.  Torque pattern variation for different force laws, kinematics and geometry. Torque pattern with (a) frictional, (b) 
granular (b), and (c) inertial force laws. A  =  7.54 in (a)–(c).(d) Large amplitude A  =  12.57. (e) Increasing amplitude toward the tail. 
A = 7.54(1 − s). (f) With a large head. Insets in (d)–(f) are schematic diagrams of the corresponding models. The head is not drawn 
to scale. See supplementary videos S3-8 for the respective torque patterns as a function of ξ for (a)–(f).
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curvature phasors are drawn to reflect only their relative magnitudes for the same value of ξ.
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lateral forces and the torque: zero total lateral force 
requires both negative forces and positive forces to be 
present at any time; the zero torque condition further 
requires that the negative forces be distributed on both 
sides when the force in the middle is positive (a simi-
lar argument was made by Gray [37]). Nonetheless, 
the phase differences of the forces between the middle 
point and the end points increase with increasing wave 
number.

In phasor diagrams, a variable is represented by a 
phasor (vector), whose projection on the horizontal 
axis is the instantaneous value of the variable and the 
rotation of the phasor corresponds to the time evo
lution. Since T and Te only have a sign difference, we 
examine the phasors of the external torque Te and first 
focus on the phasor of Te at the middle point of the 
body (Te

mid = Te(s = 0.5) in figure  5(b)). The force 

contribution to Te at the middle point (i.e. (l  −  0.5)Fy 
for l  >  0.5) is discretized and visualized using phasors 
in figure 5(b). The integrative nature of the torque at 
the middle point makes the phase of Te between the 
phases of the forces. Interestingly, the torque Te at 
the middle point is precisely either out of phase (for 
ξ < 2) or in phase (for 2 < ξ < 2.3) with the force at 
the middle point. This alignment can be understood 
by considering the symmetry and torque balance when 
the force at the middle is zero (this case is similar to the 
one shown in figure 1 with the fore-aft forces ignored): 
the lateral displacement is symmetric about the middle 
point while the lateral velocity and force distributions 
are antisymmetric. The antisymmetric force distribu-
tions generate torque about the middle point with the 
same sign but the total torque on the body must be 
zero. Therefore, the torque from each half of the body 
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(i.e. Te(0.5)) at this time instant must be zero. When ξ 
approaches 2, one full wavelength appears on each side 
of the body, the torque contributions cancel out, and 
Te

mid becomes zero. As ξ continues to increase, the Te
mid 

becomes in phase with the local force Fmid. This situ-
ation corresponds to a breakdown in the torque pat-
tern of a single traveling wave and a reversal of the local 
torque wave at the middle.

To understand the speed variation of the torque 
wave (figure 3(a)), we compare the phase differences 
of the torque, force and curvature at the middle point 
and at the head (s  =  1). At a point infinitely close to 
the head, the torque Te

head is simply in phase with the 
local force at the head (Fhead). Therefore, the phase  
difference between the torques at the middle point 
and at the head (the angle between Te

mid and Te
head in  

figure 5(b)) is considerably smaller than the phase dif-
ference between the forces (the angle between Fmid and 
Fhead in figure 5(b)) and the phase difference between 
curvatures (the angle between κmid and κhead  in  
figure 5(b)). As ξ increases from 0.5 to 1.8, the phase of 
Te

mid remains the same, but Te
head increases at the same 

rate of Fhead. Therefore, the phase difference of torque 
increases from a smaller number (approximately 
0.25π for ξ = 0.5) to nearly π. Since such an increase 
is greater in proportion compared to the increase in 
curvature, which is from 0.5π to 1.8π, the speed of the 
torque wave relative to the curvature wave decreases.

As shown in the above analysis, the torque pattern 
is primarily determined by the phase distribution of 
the forces modulated by distance. This picture can also 
help explain the observed torque variations (figure 4). 
When the force laws are changed to granular or fric-
tional ones, the phase distributions of the forces on 
the body are similar; therefore, similar torque patterns 
are observed. The phase of the reactive force is pro-
portional to the time derivative of the velocity and is 
hence ahead of the phase of the resistive force by π/2; 
therefore, the phase of the torque is shifted by the same 
amount. When the curvature amplitude increases 
toward the tail, the motion and forces on the head are 
relatively small; thus, the effective phase range from the 
head to tail is smaller than the nominal one indicated 
by ξ, and the two-wave transition is delayed (greater 
ξ). For the case with a head, because the head force is 
nearly out of phase with the total torque from other 
parts when the two-wave transition occurs (see the 
red and magenta arrows in figure 5(b), ξ = 1.8), the 
enhancement of the head drag causes the cancellation 
and reversal of the torque to occur earlier (smaller ξ).

Discussion

In the resistive force theory for viscous fluids, 
the assumption that the force on one segment is 
independent of the movement of other segments might 
introduce significant errors in the forces [33]. Such 
error can be alleviated by using slender body theory 
[38]. In slender body theory, the body of the swimmer 

is assumed to be slender, and the ratio between the 
radius of the body and body length a/L is much smaller 
than 1. Singularity solutions of point forces and 
dipoles are arranged along the body centerline ,and 
the velocity at a point is computed as the superposition 
of the singularity solutions to include the effect of the 
interaction between segments (see [33] for the details 
of the explanation and implementation). Here, we use 
a biologically relevant body shape 1/L  =  1/30 [39] 
and the same kinematic parameters in RFT. We found 
that the transition of the torque pattern from slender 
body theory is qualitatively the same as those from 
resistive force theory but the transition to the two-
wave pattern occurs at smaller ξ (≈1.8) (figures 6(a) 
and (b)). The wave speed ratio from SBT is also slightly 
smaller than the result from RFT (e.g. 3.0 versus 3.3 
at ξ = 1). Examination of the force distribution for a 
small amplitude reveals one mechanism for the early 
transition: forces at the head and tail are larger because 
at the ends, the segments experience greater drag force 
as less segments are nearby to ‘help’ induce the flow. 
Similar to the case with a head (figure 4(f)), the head 
and tail forces are nearly out of phase with the total 
torque from other parts and the enhancement of the 
drags and the ends causes the cancellation and reversal 
of the torque to occur earlier.

The resistance to the bending from the body can 
also contribute to the torque, therefore, we further 
discuss the effects of elastic and viscous forces in the 
body in a general way. We assume that the elastic force 
requires an additional torque Ts = Ceκ and that the 
viscous force requires an additional torque Tv = Cvκ̇. 
Since when these torque dominates, the torque pattern 
just coincides with the curvature pattern, a traveling 
wave, we consider the case in which these torques are 
significant but smaller compared to the torque from 
external forces. Therefore, the coefficients Ce and Cv are 
chosen such that maximal values of these torques are 
20% of the maximal values of the torque from exter-
nal forces, i.e. T = Te/max(Te) + 0.2κ̇/max(κ̇) and 
T = Te/max(Te) + 0.2κ/max(κ). For ξ < 1.8, the 
inclusion of elastic force causes the wave speed of the 
torque in the middle part to decrease (figure 7(a)). For 
example, vT/vκ = 2.9 for ξ = 1. The inclusion of vis-
cous force causes the wave speed of the torque in the 
middle part to decrease. For example, vT/vκ = 1.8 for 
ξ = 1.

In this study, we also adopted a highly simplified 
locomotion gait, but organisms adopt gaits different 
from a single-mode sinusoidal curvature wave during 
turning and other maneuvers [40, 41]. The torque pat-
tern and neural control required for these maneuvers 
may be quite different and warrant further study.

As shown in our variation study and previous 
studies, inertia, body elasticity, interactions between 
body parts, and complex body geometry may all 
affect the torque and muscle activation patterns. 
Therefore, the predicted torque from our simple 
model probably cannot match the muscle activa-
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tion of a particular organism in detail. However, the 
torque predicted by our model is certainly an impor-
tant part of the total torque that needs to be over-
come by many organisms.

Our results predict that muscle activation is no 
longer a traveling wave when the dominant forces that 
the animal must overcome are external resistive forces 
and the wave number is greater than two (e.g. the snake 
in [21]). However, to our knowledge, muscle activa-
tion and neural control in animals with wave numbers 
greater than 2 have not been studied. From another 
perspective, our results predict that muscle activation 
of a traveling wave cannot produce a uniform bending 
wave for more than two wavelengths if external forces 
significantly contribute to the torque. For robotic sys-
tems, our results show that the distributions of torque 
magnitude and energy output along the body can be 
adjusted by varying the wave number; this informa-
tion may guide the design of driving systems and the 
use of passive materials.

In summary, our study provides a general picture 
of the torque pattern from resistive forces in undula-
tory locomotion, including new and complex patterns 
that have not previously been observed. By introduc-
ing the phasor diagram for undulatory locomotion, we 
show that the torque pattern can be understood from 
the integration of distance-modulated force phasors 
and that the rapid transitions occurring near integer 
numbers are the result of the cancellation of the force 
phasors. The phasor diagram method may be a use-
ful tool to further investigate the interplay between 
torque, passive body forces, body shape, and external 

forces in undulatory locomotion.
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