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Three-Dimensional Modeling of a Fin-Actuated
Robotic Fish with Multimodal Swimming
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Abstract—Dynamical model is always an important factor in
controller design for robots. Existing models of robotic fish
typically incorporate only planar motion, rarely considering
spatial motion. This paper formulates a complete 3D dynamic
model for the robotic fish actuated by pectoral and caudal fins, in
which the fluid forces mainly contain quasi-steady lift and drag,
gravity and buoyancy, and waterjet strike force. The critical lift
and drag of flapping fins are derived with an explicit 3D angle
of attack. Taking a bio-inspired central pattern generator (CPG)
as the system actuation, our model can produce multimodal
maneuvers, including forward/backward swimming, turning, and
ascending/descending, as well as complicated motions such as
rolling and spiraling. Motions simulated in a 3D environment
are experimentally validated with a free-swimming robotic fish.
Furthermore, systematic comparisons between simulations and
experiments are conducted over a wide range of the control
parameter space for beating frequency, amplitude and offset. The
overall results demonstrate the effectiveness and the versatility of
the developed 3D dynamic model in the prediction of the robot
trajectory, velocity, and attitude.

Index Terms—Three-dimensional modeling, biologically in-
spired robots, robot dynamics, marine robotics, robotic fish.

I. INTRODUCTION

THE maneuverability, efficiency and motion stability of
fish substantially exceed those of current underwater

vehicles. These outstanding characteristics make fish an ex-
cellent source of inspiration for scientists and engineers aim-
ing to design and build versatile underwater vehicles. As
a consequence, there has been an ever-growing interest in
developing biologically inspired robotic fish over the past two
decades [1], [2], such as lifelike 3D swimming robotic fish [3],
[4], amphibious robotic fish [5], boxfish-like robots [6]–[8],
robotic manta ray [9], robotic mackerel [10], two-caudal-fin
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robotic fish [11], wire-driven robotic fish [12], and soft robotic
fish [13]. Robotic fish have great potential for many marine
applications, including underwater exploration, mobile sensing
and environmental monitoring [14]–[16]. In addition, robotic
fish can also serve as a controllable high-fidelity platform to
study multi-robot control [17], [18].

As a fundamental issue for designing robotic fish, the
modeling of fish dynamics has attracted a lot of attention
[19]–[23]. Lighthill’s elongated body theory [24] and large-
amplitude elongated body theory [25] are widely accepted
methods for modeling robotic fish [22], [26]–[29] because
of their good balance between fidelity and simplicity. Quasi-
steady hydrofoil theory has also been extensively adopted to
model fish robot dynamics since it has been demonstrated
to be effective, flexible and tractable [19]–[21], [30]–[32].
Additionally, by solving the Navier-Stokes equation, a faithful
hydrodynamic force distribution can be computed through
computational fluid dynamics (CFD) simulation [33], [34].
More recently, by using the linear Euler-Bernoulli beam
model, several groups have attempted to model the flexible
body and fins of natural fish [35], [36]. These fish dynamics
studies have progressively advanced the understanding of fish
swimming and the controller design of robotic fish.

At present, the vast majority of existing studies of fish robot
modeling have focused on planar motions. Notice that fish
always rely on multiple fins to achieve efficient 3D movements
such as pitching and rolling maneuvers. Hence, 3D modeling
of robotic fish will facilitate the understanding of 3D motions
in fish swimming and the design of 3D motion controllers of
robotic fish. Several groups [20], [21], [26] have preliminarily
studied the 3D modeling of robotic fish in the literature. For
instance, Boyer et al. [20] simulated 3D locomotion of an
eel-like robot by using a continuum model which considers
elemental quasi-static lift and drag. Morgansen et al. [21]
developed 3D equations of motion for their robotic fish and
briefly verified the model through forward motion, turning
motion, and depth control. However, these 3D models are
typically incomplete in predicting multimodal 3D behaviors,
especially complicated 3D movements such as rolling and spi-
raling. In addition, these studies either involve only simulation
(e.g., [20]) or contain limited experimental validation (e.g.,
[21], [26]). Lastly, the versatility of these 3D dynamic models
was not validated over large scopes of the parameter space.

This paper addresses the above problems in the previous 3D
modeling of robotic fish, and contributes in the following three
aspects: 1) the formulation of a complete 3D dynamic model
capable of producing multimodal motions of robotic fish
including forward and backward swimming, turning, pitching
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and complicated motions such as rolling and spiraling; 2) the
experimental validation of the developed 3D model for these
multimodal motions; 3) the versatility validation of the 3D
model within large scopes of parameter space through sys-
tematic comparisons between the simulated and experimental
data. A more detailed account of the contributions follow.

In this paper, we adopt quasi-steady hydrofoil theory as
the main framework because it benefits the construction of
3D motions and effectively balances fidelity and simplicity
[20], [21]. Critically, the angle of attack of the flapping fins
are derived in an exact 3D form. Furthermore, the 3D lift
and drag of the flapping fins are explicitly expressed with the
angle of attack for the first time, which largely guarantees the
generation of multimodal 3D motions. Note that Lighthill’s
elongated-body theory is restricted to planar motions, although
it strikes a sound balance between fidelity and simplicity
[37]. One can also consider the CFD method to obtain a
faithful robot model. However, this computationally expensive
approach is not amenable to designing a controller for the
robot. Systematic comparisons between the simulations and
experiments show that the formulated model is able to predict
the robot’s key features such as the velocity, attitude and the
body oscillation within a wide range of control parameters. We
admit that the developed 3D model cannot capture every detail
of the fluid-body interactions. However, the Newton-Euler
forms of the 3D dynamic model will facilitate the design of 3D
motion controllers for fin-actuated underwater robots. Indeed,
capturing all fluid flow details is not always necessary for
robot control, because control feedback can often compensate
for reasonable modeling errors.

The remainder of this paper is organized as follows. Section
II describes the prototype of the robotic fish. The 3D dynamic
model for robotic fish is formulated in Section III. Simulations
and experimental results for multiple 3D motions are system-
atically analyzed in Section IV. Conclusions and future work
are given at the end of this paper.

II. ROBOT PROTOTYPE OVERVIEW

The robot prototype is inspired by ostraciiform swimmers
which always have a rigid body and rely on their multiple fins
to propel and maneuver. As shown in Fig. 1, the prototype
consists of a well-streamlined rigid body, a pair of rigid
pectoral fins and a rigid caudal fin. The mass distribution of
the robot is carefully designed to facilitate 3D motions. First,
the center of mass (C. M.) of the robot is calculated by setting
the density/mass of each component in Solidworks. Second,
the center of buoyancy (C. B.) of the robot can be acquired
through Solidworks by assuming the robot has a uniform mass
distribution. Finally, the robot density is designed close to
1000 kg/m3. The C. M. of the robot is slightly lower than
but on the same vertical axis as the C. B.. These features
facilitate both the planar and 3D motions of the robot.

The main controller of the robot adopts a credit-card sized
computer, Raspberry Pi 2. It is responsible for high-level tasks,
such as image processing, localization, and motion planning.
Moreover, three STM32 microcontrollers acting as auxiliary
processors are used for locomotion control, attitude calculation
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Fig. 1. Mechanical and hardware configurations of the fish robot. (a) Concept
design; (b) robot prototype.

and data acquisition. Fig. 2 shows the implementation diagram
of the robot control system. Moreover, the robot integrates
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Fig. 2. Implementation diagram for the robot control system. The arrays
indicate the information flow.

several types of sensors onboard. An inertial measurement unit
(IMU) is fixed parallel to the body principal axes to monitor
the robot pitch, yaw and roll angles, angular velocity and
acceleration. Pressure sensors are distributed on the surface
of robot. The camera and infrared sensor are not used in this
study. The robot is operated by a Linux system (Debian), and
the specifications are listed in Table I.

The locomotion of the robot is controlled by a central
pattern generator (CPG) network [38], [39] defined as follows
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TABLE I
TECHNICAL SPECIFICATIONS OF THE ROBOT PROTOTYPE

Items Characteristics
Dimension(L × W × H) ∼ 400 mm× 140 mm × 142 mm
Total mass ∼ 3.1 kg
Drive mode DC servomotors (12.9 kg·cm)
Onboard sensors Camera, IMU, pressure sensor,

and infrared sensor
Power supply 9.6 V rechargeable Ni-MH batteries
Operation time ∼ 5 h
Control mode Autonomous/Wireless mode

ṗi = κi(Pi− pi) (1a)
ȯi = νi(Oi−oi) (1b)
τ̇i = 2π fi + ∑

j∈Ti

µi j(τ j− τi−ϕi j) (1c)

ζi = oi + pi sin(τi) (1d)

where pi, oi, and τi are state variables representing the ampli-
tude, offset and phase of the ith oscillator, and ζi is the output
of the CPG controller. fi, Pi and Oi are control parameters
for the desired frequency, amplitude and offset of the ith

oscillator. µi j and ϕi j determine the coupling weight and phase
bias between the jth oscillator and ith oscillator respectively.
κi and νi are constants representing the convergence speed
of the ith oscillator. Ti is the set of neighbors of the ith

oscillator. Subscripts i = 1, 2, 3 represent the left pectoral
fin, right pectoral fin and caudal fin of the robot respectively.
The CPG controller is implemented on the SMT32 microcon-
troller/coprocessor shown in Fig. 2. Discretization is required
for implementing our continuous CPG model on a digital
microcontroller. The eulerian difference method is applied to
balance the limited computing power of microcontrollers and
calculation precision. More implementation details of the CPG
controller can be found in our previous work [40].

In this study, CPG serves as the actuation of the robot
system to generate multiple 3D motions such as forward and
backward swimming, turning, ascending and descending, both
in simulations and experiments. For simplicity, the frequencies
of the robot oscillators are the same ( fi = f ), and the phase
biases ϕi j equal zero. The CPG parameters become { f ,Pi,Oi}
in this study.

III. 3D DYNAMIC MODEL

Fig. 3 shows a diagram of the system, consisting of a rigid
robotic fish body, a pair of active rigid pectoral fins and an
active rigid tail. We use [X,Y,Z] to denote inertial coordinates,
[x,y,z] to denote body-fixed coordinates with unit vectors
[x̂, ŷ, ẑ], and [xi,yi,zi] to denote three fin-fixed coordinates.
Origins of [x1,y1,z1], [x2,y2,z2] and [x3,y3,z3] are expressed
as (al ,−bl ,cl) , (ar,br,cr) and (−at ,bt ,ct) in the body-fixed
coordinates, respectively. The velocity of the robot is denoted
by V with unit vector V̂, consisting of longitudinal velocity
Vx, lateral velocity Vy and vertical velocity Vz, expressed in the
body-fixed coordinates. The roll, pitch and yaw of the robot are
respectively denoted by φ , θ and ψ , and the angular velocity
is denoted by ω= [ωx ωy ωz]

T .
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Fig. 3. Oblique view of the robot undergoing 3D motions.

A. Kinematic Analysis
The total force on the fin is supposed to act on its center

of pressure (C. P.). We assume C. P. is coincident with the C.
M. of the fin in this study. The fin velocity expressed in the
body-fixed coordinates is denoted by

vi = V+ω× Ii +vi
r (2)

where Ii denotes the vector from the body center to the C. P
of the ith fin, vi

r is the velocity of the ith fin relative to the
robot body, and “×” represents the cross product of vectors.
Similarly, v̂i is the unit vector of vi. According to the robot
configurations in Fig. 3, Ii is expressed as I1 = (al− rx cosζ1)x̂− (bl + ry)ŷ+(cl + rx sinζ1)ẑ

I2 = (ar− rx cosζ2)x̂+(br + ry)ŷ+(cr + rx sinζ2)ẑ
I3 =−(ac + rc cosζ3)x̂+ rc sinζ3ŷ+ ccẑ

(3)

where rc denotes the distance between C. P. of the caudal fin
and the origin of the caudal fin fixed coordinates. We define
the distance between C. P. of the left (right) pectoral fin and
the origin of the left (right) pectoral fin fixed coordinates as
(r2

x +r2
y)

1/2 where rx and ry are the distance components along
the x1/x2 axis and along the y1/y2 axis, respectively. We can
derive vi

r in (2) from the robot configurations
v1

r = rxζ̇1 sinζ1x̂− rxζ̇1 cosζ1ẑ
v2

r = rxζ̇2 sinζ2x̂− rxζ̇2 cosζ2ẑ
v3

r = rcζ̇3 sinζ3x̂+ rcζ̇3 cosζ3ŷ
(4)

B. Evaluation of Hydrodynamic Forces
We mainly consider four types of hydrodynamic forces for

the robot: the lift and drag caused by the fin motions, the lift
and drag caused by the body, the gravity and buoyancy acting
on the body and the water strike forces.

We first analyze the lift and drag caused by the fin motions.
Lift is defined as the force acting perpendicular to the direction
of the motion and drag as that acting parallel to the direction
of the motion, as shown in Fig. 4. Because the robotic fins
always move at a high Reynolds number, the lift F i

L and drag
F i

D of the ith fin can be described as follows [41], [42]

F i
L =

1
2

ρ(ci
L1αi + ci

L2α
2
i +o(α2

i ))|vi|2Si (5)

F i
D =

1
2

ρ(ci
D0 + ci

D1αi + ci
D2α

2
i +o(α2

i ))|vi|2Si (6)
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the normal vectors of left pectoral fin and tail surfaces, respectively.

where ρ is the density of water, αi is the angle of attack for
the ith fin denoting the angle between the reference line of
the robot’s fin and the oncoming flow, Si is the surface area
for the ith fin, ci

D0, ci
D1 and ci

D2 are the drag coefficients for
the ith fin, ci

L1 and ci
L2 are the lift coefficients for the ith fin,

and o(α2
i ) is the second-order infinitesimal of αi. In particular,

the expressions of lift and drag coefficients are derived from
[41], where the lift and drag coefficients are formulated as
trigonometric functions of angle of attack. Similarly, in this
paper we use polynomial functions to approximate these
trigonometric relations between lift/drag coefficients and the
angle of attack. Moreover, the drag acting on the robotic fin
is expressed in the body-fixed coordinates as

Fi
D =−F i

Dv̂i (7)

The normal vector of the ith fin surface is expressed as follows
in the body-fixed coordinates n1 = sinζ1x̂− cosζ1ẑ

n2 = sinζ2x̂− cosζ2ẑ
n3 = sinζ3x̂+ cosζ3ŷ

(8)

The lift acting on the robotic fins is expressed in the body-
fixed coordinates as

Fi
L =


v̂i sinαi−ni

|v̂i sinαi−ni|
F i

L, if ni · v̂i > 0

v̂i sinαi +ni

|v̂i sinαi +ni|
F i

L, if ni · v̂i ≤ 0
(9)

where the angle of attack αi is explicitly defined for the first
time in 3D space

αi = |arcsin(ni · v̂i)| (10)

Since the robot dynamics are calculated in the body-fixed
coordinates, the drag and lift acting on the fins will form
torques with respect to the C. M. of the robot body

Mi = Ii× (Fi
D +Fi

L) (11)

where Mi is the sum of drag and lift moments acting on the
C. M. of the robot body caused by the ith fin motion.

Now we calculate the gravitational force and buoyancy
acting on the robot. The gravitational acceleration vector

is expressed as RT g in the body-fixed coordinates, where
g = [0,0,g]T (g = 9.8 m/s2) and R is the transform matrix
from body-fixed frame to earth-fixed frame

R =

 cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ

 (12)

where cθ represents cosθ , sφ represents sinφ and so on.
Then, the gravitational force denotes Fg = mRT g where m
is the mass of the robot. As mentioned in Section II, the
robot is designed to be neutrally buoyant, with the C. B. and
C. M. non-coincident but co-located along an axis parallel
to the z axis. Hence, the robot buoyancy can be expressed
as Fb = −mRT g in the body-fixed coordinates. We define a
vector pointing from the C. M. to C. B. as rb = [0,0,hb]

T .
Then, the net torque caused by the non-coincident forces [21]
is expressed in the body-fixed coordinates as

Mg = rb×Fb = mRT g× rb (13)

The robotic fish body also experiences the drag force FD
and moment Mb [21], [43]. We reasonably assume that the
angle of attack of the body is small in steady swimming. As
a result, the lift acting on the body is negligible and the drag
acting on the robot body takes the form

FD =−1
2

ρ|V|2SCDV̂ (14)

where CD is a 3×3 matrix and S is the surface area ten-
sor of the robot body. S is defined as V̂T AV̂ where A =
diag(Sxx,Syy,Szz). Sxx, Syy and Szz denote respectively the
maximum cross-section area of body perpendicular to x, y
and z axes.

Lastly, the drag moment Mb was caused by two types of
body motion and expressed as Mb = Mw +Mv where Mw is
caused by the body rotation while Mv is caused by the body
velocity. First, it is known that the water can add a damping
effect to rotations of the body about its principal axes. This
effect [21] is somewhat roughly, but effectively, contained in
the model as a simple viscous moment impeding the body’s
rotation in all directions

Mw =−Cwω (15)

where Cw = diag(Cwx,Cwy,Cwz) is a simple damping coeffi-
cient. Moreover, the water always strikes on the body while
the robot is swimming in the water, which accounts for the
waterjet strike force [44], [45] and induces a new torque

Mvx =
1
2

ρCvx|V|2(
Vy

|Vz|
Syy−

Vz

|Vy|
Szz)

Mvy =
1
2

ρCvy|V|2(
Vz

|Vx|
Szz−

Vx

|Vz|
Sxx)

Mvz =
1
2

ρCvz|V|2(
Vx

|Vy|
Sxx−

Vy

|Vx|
Syy)

(16)

where Cvx, Cvy and Cvz are the moment coefficients for the x-
axis, y-axis and z-axis and Cv = diag(Cvx,Cvy,Cvz) respectively.
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C. Model Formulation

In this study, the robot is modeled as a rigid body with
three rigid fins surrounded by an irrotational, inviscid and
incompressible fluid. The dynamic equations of the robot are a
set of nonlinear, first-order differential equations with respect
to the body-fixed frame. Combining Newton’s second law for
linear motion and Euler’s equation for angular motion, these
equations are described as follows[

F
M

]
=

[
m̃I 0
0 J

][
V̇
ω̇

]
+

[
ω× m̃V
ω× Jω

]
(17)

where F and M are respectively the external force and torque,
applied to the center of mass of the robotic fish; I ∈R3×3 is the
identity matrix. The cross products represent the Coriolis effect
as the body-fixed coordinates are not an inertial frame. m̃ and
J are respectively the mass and inertia matrices of the robot,
including added mass effects. We reasonably assume the robot
has three planes of symmetry, then m̃ = diag(mxx,myy,mzz),
J = diag(Jxx,Jyy,Jzz). The calculations for m̃ and J of robotic
fish can be found in [46]. Finally, the 3D model for the robotic
fish can be further summarized to the control-affine form

V̇ =
∑

3
1(Fi

L +Fi
D)+FD +Fg +Fb−ω× m̃V

m̃

ω̇=
∑

3
1 Mi +Mw +Mv−ω× Jω

J

(18)

where all the forces and torques in (18) have been explicitly
expressed in above analysis.

Now we can employ numerical methods to simulate the
robot model. We use unit quaternions (q= q0+q1i+q2j+q3k)
to express the robot position and attitude

[Ẋ Ẏ Ż]T =C(q)V (19)
φ = arctan2(2q0q1 +2q2q3,1−2q2

1−2q2
2) (20)

θ =−arcsin(2q0q2−2q1q3) (21)
ψ = arctan2(2q0q3 +2q1q2,1−2q2

2−2q2
3) (22)

where C(q) is the transformation matrix taking the form

C(q)=

q2
0+q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)
2(q1q2+q0q3) q2

0−q2
1+q2

2−q2
3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q0q1+q2q3) q2
0−q2

1−q2
2+q2

3

 (23)

and q can be calculated by the following equation
q̇0
q̇1
q̇2
q̇3

=
1
2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0




q0
q1
q2
q3

 (24)

Synthesizing (18)-(24), we can ultimately solve the kinemat-
ic (e.g., robot position, linear velocity, angular velocity and
attitudes) and dynamic (e.g., force and moment) parameters
through the numerical Runge-Kutta method in a Microsoft Vi-
sual Studio environment. As a result, multiple spatial motions
of the robotic fish will be broadly generated in simulations
and then estimated through extensive experiments below.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the effectiveness and the versatility
of the developed 3D dynamic model, multimodal swimming
behaviors including forward/backward swimming, turning, as-
cending/descending and rolling and spiraling maneuvers are
extensively investigated, both in simulations with the built
model and during experiments with the robot.

A. Model Parameter Determination

Many coefficients in the model such as the robot mass and
moment of inertia can be directly measured or calculated.
Some coefficients can be easily measured by simple exper-
iments. For instance, the drag coefficient of the robot body is
measured by a force measurement apparatus [47]. However,
some coefficients such as the lift and drag coefficients of the
flapping fins are difficult to measure. We, therefore, identify
them from the experimental motion data.

The unknown hydrodynamic parameters contain the lift
coefficients ci

L1,ci
L2 in (5), the drag coefficients ci

D0, ci
D1, ci

D2
in (6), and the moment-related coefficients Cwx, Cwy, Cwz, Cvx,
Cvy, and Cvz in (15) and (16). Preliminary simulations with
our model indicate that 1) moment-related parameters do not
affect the robot’s linear motion and 2) the lift/drag coefficients
of the pectoral fins and tail are mutually independent. Further,
we assume that the parameters for the left and right pectoral
fins are identical considering the identity of the geometrical
shapes and the skin material. Therefore, we categorize these
unknown parameters into five groups: {c1

L1,c
1
L2,c

1
D0,c

1
D1,c

1
D2},

{c3
L1,c

3
L2,c

3
D0,c

3
D1,c

3
D2}, {Cwx,Cvx}, {Cwy,Cvy} and {Cwz,Cvz},

which are identified through the motion data respectively
from tail-actuated forward swimming, pectoral-fin-propelled
forward swimming, pectoral-fin rolling, pectoral-fin pitching,
and pectoral-fin turning. The lower and upper bounds are listed
in Table II. These bounds are determined by appropriately

TABLE II
BOUNDS OF THE HYDRODYNAMIC PARAMETERS

Item C1
L1 C1

L2 C1
D0 C1

D1 C1
D2 C3

L1 C3
L2 C3

D0

λl -1 -3 -1 -1 0 -1 -3 -1
λu 1 3 1 1 3 1 3 1

Item C3
D1 C3

D2 Cwx Cwy Cwz Cvx Cvy Cvz

λl -1 0 0 0 0 0 0 0
λu 1 3 1 1 1 1 1 1

Note: λ represents the parameters to be identified and the notation λl and λu
denote the lower and upper bounds of λ .

extending the ranges of empirical values from [41], [42].
For each of the above parameter groups, we conduct sim-

ulations for all the parameter combinations and extract the
simulated linear speed, angular speed, and attitude for each
situation. The interval for lift and drag coefficients of the
fins is restricted to 0.1 and the interval for moment-related
coefficients of the fins is restricted to 0.05. At the same time,
we gathered experimental speeds and attitudes when the robot
was swimming, in accordance with the specified simulated
motion. Finally, we used the least square method to determine
the optimal solution for each parameter group. The optimal



1083-4435 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2018.2848220, IEEE/ASME
Transactions on Mechatronics

6

solution has the least deviation between the experimental
and the simulated motion data. Consequently, we obtain the
identified hydrodynamic parameters λ ∗ listed in Table III.
Because of the space limitation, the validation results of these

TABLE III
PARAMETER VALUES FOR THE MODEL SIMULATION

Item Value Item Value Item Value
m 3.093 kg mxx 2.517 kg myy 6.257 kg
mzz 6.257 kg ρ 1000 kg/m3 Jxx 0.021 kg·m2

Jyy 0.102 kg·m2 Jzz 0.102 kg·m2 Axx 0.030 m2

Ayy 0.050 m2 Azz 0.050 m2 CD 0.672
Cvx 0.025 m3 Cvy 0.050 m3 Cvz 0.050 m3

Cwx 0.015 m/s Cwy 0.010 m3 Cwz 0.020 m/s
C1

L1 0.500 C1
L2 -0.200 C1

D0 0.100
C1

D1 0.000 C1
D2 2.500 C2

L1 0.500
C2

L2 -0.200 C2
D0 0.100 C2

D1 0.000
C2

D2 2.500 C3
L1 0.800 C3

L2 -0.200
C3

D0 0.100 C3
D1 0.000 C3

D2 2.500
S1 0.00875 m2 S2 0.00560 m2 S3 0.00560 m2

al 0.06 m bl 0.050 m cl 0.000 m
ar 0.060 m br 0.050 m cr 0.000 m
at 0.100 m bt 0.000 m ct 0.000 m
rx 0.030 m ry 0.050 m rz 0.140 m
hb -0.005 m

coefficients are not presented here. However, the following
systematic comparisons between simulations and experiments
soundly validate the effectiveness of these coefficients in the
3D dynamic model.

B. Experimental Description

Multimodal swimming behaviors were conducted both in
simulations and experiments in which the robot motion data
such as the robot position, linear and angular velocities, and
attitude were recorded. The planar motions (forward/backward
swimming and turning) experiments were performed in a 300
cm × 200 cm × 20 cm tank and the 3D motions (pitching,
rolling and spiraling) experiments were performed in a 400 cm
× 200 cm × 90 cm tank. Both the simulations and experiments
are performed in an open loop. Planar position and velocity of
the robot in the experiments are obtained through our online
vision tracking system [48], as shown in Fig. 5(a). The online
tracking system contains an overhead camera, a robust tracking
algorithm providing real-time tracking of moving robots on a
water surface, and a computer to receive the video stream
and run the tracking algorithm [48]. A Kalman filter was
applied to smooth the tracking results to remove the noise
during tracking. Note that the motion tracking platform is
not integrated into the robot, and it is an independent system
for the identification of the robot motion. Robot attitude and
angular velocity are collected from an onboard IMU whose
sampling rate is 50 Hz. The accuracy for yaw, pitch, roll, and
angular velocity are respectively 2◦, 1◦ and 1◦, and 0.5◦/s.
Moreover, the vertical position and velocity of the robot is
measured by the onboard pressure sensor, according to the
following formula

p = ρgh (25)

where p is the pressure, h is the depth of water and ρ is
the density of the water. Snapshots of the typical swimming

Computer

Swimming tank

The robot

Camera

(a)

(b)

b.1 forward swimming b.2 turning b.3 backward swimming

b.4 descending b.5 rolling maneuver b.6 spiraling

Fig. 5. Experimental platform and typical motions in the experiments. (a)
Experimental setup and (b) the explored typical motions.

behaviors explored by the developed 3D model are illustrated
in Fig. 5(b).

C. Rectilinear Motion

The first experiment focused on the model performance of
rectilinear motion including forward and backward swimming.
We first present a forward swimming case to compare the
simulated and experimental data in Fig. 6. The characteristic
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Fig. 6. Comparative tests of forward swimming at f = 1.0 Hz, which contain
the trajectories (a), yaw angles (b) and linear (c) and angular speeds (d). Note
that displacements X, Y and yaw angle are in the global inertial reference
frame. Linear and angular velocities are in the body-fixed frame.
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parameters of the adopted CPGs were set as: f = 1.0 Hz,
P1 = P2 = 0, P3 = 15◦, O1 = O2 = O3 = 0. As can be
seen, experimental trajectories, yaw angle, linear and angular
velocities are in good agreement with simulated data, verifying
the effectiveness of the built dynamic model. More specifically,
from Fig. 6(a), (b), and (d), it can be seen that the simulated
data also basically capture the axial and lateral oscillations in
fish swimming which have been nicely demonstrated by biol-
ogists [49]. Similarly, previous robotic fish models [20]–[22],
[26] also exhibited these oscillatory features while swimming.
Therefore, although the oscillation in linear speed (Fig. 6(c))
cannot be directly compared because of the limited accuracy
of our current localization system, we can reasonably deduce
that the real linear speed of the robot will also oscillate
periodically, similar to the simulated linear speed.

Moreover, rectilinear motions are compared systematical-
ly within the available CPG parameter space to validate
the versatility of the established dynamic model. Although
forward motion can be selectively achieved by the tail, by
the the pectoral fins, or by a combination of the tail and
the pectoral fins, we choose tail-driven forward mode as a
representation of forward motion. On the other hand, the
backward motion is implemented by flapping the pectoral fins
with zero offsets. For both forward and backward motions, the
explored frequency was changed every 0.1 Hz from 0.5 Hz to
1.5 Hz, and the amplitude was changed every 5◦ from 10◦ to
30◦. Each experiment was performed 5 times to reduce errors.

Fig. 7(a) and (b) show the comparison between the sim-
ulated and experimental forward speeds; Fig. 7(c) and (d)
show the comparison between the simulated and experimental
backward speeds. It can be seen that the simulated data are in
fairly acceptable agreement with the experimental data. More
specifically, the average prediction error of the developed mod-
el for forward and backward motions are respectively 14.30%
and 20.88% among the whole CPG parameter space. Both the
simulated and experimental rectilinear velocities increase with
beating frequency and with amplitude. More careful inspection
indicates that both the simulated forward and backward speeds
exhibit relatively larger discrepancies with experimental data at
higher actuation frequency and amplitude. This unconformity
is probably caused by the limited torques of the adopted
servomotors of the robot. Furthermore, it is interesting to note
that the backward velocities here are comparable to the tail-
actuated forward speed, suggesting that the pectoral fins can
not only improve robot maneuverability and balance but also
contribute a lot to robot propulsion.

D. Turning Motion

In this subsection, we estimate the model versatility for turn
maneuvers within a wide range of parameter space. Similar to
forward motion, turning maneuvers can be implemented by
several different fin combinations. Here the offset of the flap-
ping tail is used to accomplish a turning maneuver. Moreover,
we restrict the tail amplitude to 15◦ both in simulations and
experiments. The beating frequency was changed every 0.1
Hz from 0.5 Hz to 1.5 Hz, and the tail offset was changed
every 5◦ from 15◦ to 40◦. Each experiment was performed 5
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Fig. 7. Comparisons of simulated and experimental rectilinear (forward and
backward) speed for different frequencies and amplitudes.

times to reduce errors. Fig. 8 (a) and (c) show the simulated
turning speed and radius respectively, and Fig. 8 (b) and (d)
depict the experimental turning speed and radius respectively.
It is clear that the turning speed increases with the beating
frequency and oscillation offset, and that the turning radius
decreases with the oscillation offset. Interestingly, however the
turning radius is constant with the beating frequency. Although
there are some discrepancies in the high speed area, the built
model basically predicts the robot’s turning speed and turning
radius within a large-scale parameter space, validating the
versatility of developed dynamic model for turning motions
on the whole. The average errors of the dynamic model in the
prediction of turning speed and radius are respectively 19.2%
and 8.9% within the explored parameter space. Similarly, the
visible discrepancies between the simulation and experimental
results at high actuation frequency and large amplitude are
largely caused by the limitation of servo motor torque. As
can be observed, the turning speed increases with the beat-
ing frequency and oscillation offset. Moreover, the turning
radius also increases with the oscillation offset. However, it
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Fig. 8. Comparisons of simulated (a) and experimental (b) turning speed,
and of simulated (c) and experimental (d) turning radius for different beating
frequencies and offsets.

is interesting that the turning radius is approximately constant
with the beating frequency. These intrinsic relations will
greatly facilitate motion controller design and path planning
for robotic fish in real applications that require various turning
conditions.

E. Pitching Motion

Next, we explored the performance of the dynamic model
in predicting pitching motions. Fig. 9 shows the comparison
between the simulated and experimental data where the robot
started to ascend from rest where the CPG parameters are
f = 1.5 Hz, P1 = P2 = 15◦, P3 = 0, O1 = O2 =−45◦, O3 = 0.
As can be seen, experimental results are in good agreement
with simulated data, verifying the effectiveness of the estab-
lished dynamic model. More specifically, the negative speed
in the vertical direction in Fig. 9(a) indicates the robot is
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Fig. 9. Comparison of simulated and experimental data for pitching
maneuver. (a) Speeds and attitudes for a certain ascending behavior; (b)
velocities for different offsets of pectoral fins at two fixed frequencies.

swimming upwards. The simulated forward velocity (0.122
m/s) and vertical velocity (–0.051 m/s) during steady state are
close to the experimental velocities (0.133 m/s, –0.045 m/s) of
the robot. Moreover, the positive pitch angle in Fig. 9(a) also
indicates that the robot is raising its head while ascending. It is
evident that the model basically predicts the robot’s velocities
and attitudes for pitching motion.

Moreover, to validate the versatility of the built model for
pitching maneuvers, we compared the simulations and the
experimental results in descending motions. The amplitude of
the pectoral fins is fixed at 15◦ while the tail keeps straight and
stationary in the experiment. Two fixed beating frequencies,
1.5 Hz and 2.0 Hz, are investigated, and the oscillation offset
of the pectoral fins is changed every 10◦ from 10◦ to 90◦ in the
experiment. Descending behavior was performed 5 times for
each combination of the CPG parameters. Fig. 9(b) compares
the simulated and experimental data for horizontal velocities Vx
and vertical velocities Vz of the robot. As mentioned earlier, Vx
is recorded by an overhead camera and Vy is evaluated by the
robot’s onboard pressure sensors. As can be observed, the built
model basically predicted the robot’s horizontal and vertical
velocities among a wide range of CPG parameter space. The
error of the dynamic model for horizontal speed prediction and
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vertical speed are respectively 11.6% and 8.7%. Considering
the model simplification and the parameter mismatch to a
certain extent, the results are quite reasonable. Additionally,
it is clear that Vx decreases with the pectoral fin offset while
Vy increases with the fin offset. These patterns will greatly
facilitate the robot’s pitching control in the future.

F. Rolling Maneuver
Rolling maneuver which is largely ignored in fish robot

modeling was studied here for our dynamic model. As we
mentioned earlier, the C. M. of the robot is below the C.
B.. As a result, it is hard to achieve continuous rotation
about the longitudinal axis of the robot body. Nevertheless,
small scale rolling maneuvers can still be observed through
the coordination of the pectoral fins. More specifically, the
rolling maneuver was achieved by the asymmetrical amplitude
of the pectoral fins with a nonzero oscillation offset. Note
that the asymmetrical amplitude actuation of the pectoral fins
produces not merely rolling motion, but also pitching and
yawing maneuvers. To be specific, the torque along the y-
axis of the body are formed because of the offset of the
pectoral fins, thereby tilting the robot in pitching. Moreover,
the asymmetrical amplitude of the pectoral fins will form
torques along the x-axis and z-axis of the body, hence generat-
ing rolling and yawing respectively. The comparison between
the simulated and the experimental data for rolling maneuver
are illustrated in Fig. 10. The specific CPG parameters are
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Fig. 10. Comparisons of simulated and experimental results for rolling
maneuver. (a) Robot trajectory and (b) robot attitude.

f = 1.9 Hz, P1 = 25◦,P2 = 10◦,P3 = 0, O1 = O2 = 30◦, and
O3 = 0. As a whole, the model predicts the robot’s 3D
trajectory nicely, and it also predicts the robot’s yaw, pitch,
and roll angles satisfactorily, verifying the effectiveness of the
developed dynamic model in predicting complicated motions
such as the rolling maneuver.

G. Spiral Motion
3D spiral motion represents one of the highest forms of

maneuverability for robotic fish. Finally, 3D spiral motion

was explored with the developed model and experimentally
validated, as shown in Fig. 11. The motion is achieved by
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Fig. 11. Simulated and experimental spiral motion in 3D environment (side
view).

the ascending/descending motion combined with a deflected
tail. A deflected tail means the robot tail has a nonzero
offset O3 which produces rotating torque while moving. The
adopted CPG parameters for the model and the experiment are
f = 1.1 Hz, P1 = P2 = 10◦, P3 = 0, O1 = O2 = 8◦, O3 = 35◦.
In the experiment, the robot starts spiraling down from the
water surface and approaches the bottom of the pool after
60 seconds. As can be seen, the experimental trajectory is
basically in agreement with the simulated trajectory. The
average position error between the simulation and experiments
are 24.8% during the spiral motion. Although there is a
visible difference between the simulated and experimental
trajectory, the results are fairly acceptable considering the
model simplification. The success of spiral motion predictions
indicates that the proposed 3D dynamic model is suitable and
promising for future motion control and planning studies in 3D
space. To the best of our knowledge, this is the first dynamic
model prediction and experimental verification of the 3D spiral
motion for robotic fish.

V. CONCLUSION AND FUTURE WORK

In this study, we have developed a complete 3D dynamic
model for robotic fish actuated by a pair of independent pec-
toral fins and a caudal fin. The model considers the simplified
lift and drag acting on the fins and the robot body, the gravity
and the buoyancy, and the waterjet strike force. The critical
lift and drag of flapping fins are derived with an explicit 3D
angle of attack for the first time, which contributes a lot to the
success of complex 3D motions. Combining Newton’s second
law for linear motion and Euler’s equation for angular motion,
the 3D dynamics equations of the robot are formulated.

Simulations show that the model is able to predict mul-
timodal swimming behaviors of the robot, such as forward
and backward swimming, turning, pitch maneuvers, and even
complicated motions such as rolling and spiraling. Com-
parisons between the simulated and experimental trajectory,
velocity, and attitude of the robot have demonstrated the
effectiveness of the 3D dynamic model in describing multiple
swimming modes. Furthermore, we systematically compared
the simulated and experimental data over an extensive range of
CPG control parameter space for forward, backward, turning
and pitching motions. These results verify that the dynamic
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model can always predict the robot’s velocities and attitudes
satisfactorily within large scopes of control parameters, strong-
ly validating the versatility of the dynamic model for the
fin-actuated robotic fish. In summary, the work presented in
this paper provides a versatile 3D dynamic model capable of
predicting multiple 3D motions for the pectoral and caudal
fin actuated robotic fish. The developed 3D dynamic model is
formulated in a control-affine form and therefore will facilitate
the design of 3D motion controllers for robotic fish.

This work can be extended in several directions. We will
first explore the analytical insights of the model to facilitate
further controller design for the robot. Moreover, based on
the proposed 3D dynamic model, we will design model-based
path planning controllers such as a model predictive controller
for the robotic fish.
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