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Abstract—Hydrodynamic interactions are critical in fish 

schooling. However, how they can be utilized in underwater 

swarm robots has not been sufficiently analyzed and the existing 

systems were not suitable to address this issue. Therefore, we 

have developed a table-top experimental platform by modifying 

miniature toy submarines (MTSs) as underwater vehicles. We 

used a camera, machine learning algorithms, and 2.4 GHz 

wireless communication module to track and individually control 

up to 45 MTSs in real time. The underwater swarm can achieve 

cohesive and stable formations similar to fish school motions, 

which forms the basis for the analysis of collective behavior and 

strategies in actual hydrodynamic environments.  

Keywords—Underwater Swarm, Experiment Platform, 

Collective Motion, Submarine, Tracking-by-Detection. 

I. INTRODUCTION 

Swarm robots are inspired by natural biological systems and 

can complete complex tasks that are far beyond the 

capabilities of individual robot. Underwater robot swarms 

have gained considerable interest for applications such as flow 

field analysis [1], mapping underwater environment [2, 3], 

ocean exploration and monitoring [4, 5], measuring ocean 

currents [6] and disaster prevention [7].  

Animals typically move through fluids in groups because 

hydrodynamic interactions can reduce the energy consumption 

[8-11]. These interactions can also increase the stability of 

biological groups and may cause organisms to spontaneously 

form groups of specific shapes [12], as observed in bird flocks 

and fish schools [13, 14]. However, hydrodynamic 

interactions are rarely considered in underwater swarm robotic 

systems and how they can be utilized in these systems has not 

been investigated sufficiently. The existing studies have been 

primarily focused on multi-robot team formation and self-

organized coordination [15, 16] because oceanic tasks often 

require the swarms to encompass large areas and the distances 

between the individual robots are also large. However, 

aggregations are sometimes necessary and beneficial during 

deployment and return, operations in confined environment, 

and so on [17]. 

Hydrodynamic effects have been considered in various 

theoretical and numerical models [12, 18, 19]. Researchers 

found that hydrodynamic interactions are essential for 

reproducing certain collective behaviors such as milling, 

schooling, and turning [12, 20, 21]. However, the existing 

hydrodynamic interaction models are all based on idealized 

assumptions such as inviscid or simplified empirical models to 

the best of the author's knowledge. The accuracy of these 

models and the validity strategies must be verified by 

conducting swarm experiments.  

The behavior of collective motion is significantly affected 

by the scale of the system in terms of number of individuals. 

Some simulation studies have demonstrated that when the 

same control strategy is used, a drastic transition occurs when 

the number of individuals is increased from 10 to 20 in terms 

of the polarity and individual spacing group velocity [22, 23]. 

Therefore, the construction of large-scale systems is essential 

to analyze the collective behavior and control strategies of 

both natural and man-made systems. Large-scale underwater 

swarm systems (up to 120 individuals) have been previously 

developed for oceanic tasks; however, they are often quite 

bulky [24-26]. Studying these systems in a controlled 

hydrodynamic environment requires large pools, complex 

communication and positioning methods, and high endurance, 

which increases the cost of the overall process [26, 27]. 

In this study, we achieved the control of an aggregated 

swarm with hydrodynamic interaction using miniature toy 

submarines (MTSs) as underwater submersibles instead of a 

large and expensive platform and developed a table-top 

experimental platform. 

II. METHOD 

A. System overview 

The platform setup comprises a circular pool, network 
camera (MV-CA020-20GC) placed vertically above the pool, 
multiple MTSs, wireless transmitter, and host computer, as 
shown in Fig. 1A. The host computer was used for the 
detection, tracking, and transmission of the control signals of 
the MTSs. 

From a global perspective, computer vision technology was 
used for the detection and tracking of each individual MTS, 
and the real-time motion state information such as positions, 
headings, velocities, accelerations, and trajectories of the 
MTSs were obtained. The platform can adjust the control 



algorithm based on the specific collective task, and can 
simultaneously control the MTS using a 2.4 GHz wireless 
signal. Fig. 1B depicts the workflow of the platform.  

 

Fig. 1. (A) Overview of the platform. a. a network camera; b. underwater 
swarm —— miniature toy submarines; c. a circular pool, d. the host computer, 

e. wireless signal transmitter. (B) Design of the tracking-by-detection and 

control system. 

B. Underwater swarm and the pool 

The underwater vehicle was based on the type 016 
miniature toy submarine developed by BANDAI Toy 
Company, shown in Fig. 2. One propeller is placed at the aft 
for propulsion, one propeller is placed sideways at the aft for 
turning, and one motor is placed at the center of the bottom to 
control the buoyancy by adjusting the volume of the body. 
TABLE I.  presents the performance specifications.  

 

Fig. 2. Overview of miniature toy submarine design. A: Exterior. (a) power 

connection and charging port, (b) Infrared signal receiver (obsoleted), (c) 

plastic shell, (d) buoyancy system, (e) propeller. B&C: Interior (f) main 
control PCBs, (g) 2.4G wireless signal receiver, (h) buoyance motor, (i) 

steering motor, (j) main driving motor. 

The original infrared control has only two channels and 
cannot individually control many MTSs. Therefore, it was 
replaced by 2.4 GHz band wireless communication module. It 
includes a host computer, a signal transmitter, and receivers 
inside the MTSs, as shown in Fig. 2g. The signal transmitter of 
the control module can issue approximately 1 instruction to 
each of 60 MTSs within one second. 

The pool was a cylindrical container with a radius of 60 cm. 
The water area is approximately 750 times of the cross-

sectional area of the submarine. This ratio ensures that the 
boundary effects are negligible in most positions, and is based 
on the information obtained in previous experiments [28-30]. 

TABLE I.  SPECIFICATIONS OF THE MINIATURE TOY SUBMARINE 

Features and Characteristics Specifications 

Size 75×20×30 mm 

Weight 20 g 

DOF 
Surge, 150 mm/s 

Yaw, 72 °/s 

Communication 
Range: 1m 

Type: RF, 2.4 GHz 

Energy source 
Charging Duration: 25min 

Battery Life: 30min 

Cost 200 Renminbi (30 USD) 

C. Image capture and processing module 

To track and control the MTSs, computer vision software 
was used. Tracking-by-detection was done based on a deep 
learning algorithm. The hardware and software platform of the 
computer was, as follows: Ubuntu18.04, NVIDIA 3070, CPU 
I7-10700, PyTorch, CUDA v11.1, cuDNN v8.0.2. The camera 
has a resolution of 1920 × 1200 @ 54 FPS and a focal length 
of 8 mm. The images were transmitted via Gigabit networks. 
The camera was placed at a point 170 cm vertically above the 
center of the pool. 

The real-time video streams collected by the camera were 
converted into RGB 3-channel color image data (1920 × 
1280p). The detection was performed by a modified package of 
R-Centernet. Centernet [31] is an excellent algorithm which 
can detect multiple targets in real time. It presents a good 
balance between precision and speed, and focuses on small and 
densely distributed targets. It reports a detected target as a 
point at the center of the bounding box and then estimates the 
key points. The R-Centernet [32] network model adds the 
rotation factor to the original Centernet framework. We 
extended the angle range returned by R-Centernet from 0°-
180° to 0°-360° to distinguish the bow and stern of MTSs. 

We trained the modified R-Centernet using a dataset of 
2840 images of the MTSs, facilitated by LabelImg2. In the 
training process, the initial learning rate was set to 1e-5, the 
training epoch was set to 480, and the batch size was set to 6. 

We identified each MTS after the detection by using the 
Deepsort [33] package, which is a tracking package based on 
Kalman filtering and frame-by-frame data association. Angle 
information was added as a new channel to the four existing 
channels, i.e., central point abscissa, central point ordinate, 
bounding box width, and bounding box height. 

D. MTS control methods 

The steering angular speeds of the MTSs cannot be 
controlled proportionally, and can only be tuned by switching 
the steering motor on or off, which is known as Bang–Bang 
control [34]. We first consider the control in a continuous 
manner and then convert the control output to Bang–Bang 
control output.  

Path following of a single MTS.  

 

 



To test the controllability, we first controlled a single MTS 
to follow a trajectory by implementing a proportional-
differential (PD) control algorithm [35]. The target point 
moved along the trajectory and the MTS moved towards the 
target point. The current state of the MTS was described by the 

position, X, and the orientation,  . The orientation error, 
Re , 

and distance error, 
De , between the MTS and the target were 

calculated based on the current position of the target trajectory, 
XT (xT (t), yT (t)), shown in Fig. 3A. We defined:  
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where ˆ ( )X t  denotes the prediction of the position at the next 

frame based on the current position and velocity of MTS, V   

represents the current velocity of MTS (~0.75 BL/s), dt is set to 
50 ms, based on the time interval of two successive frames.  

 

Fig. 3. Input parameters of the control of an MTS. (A) The current pose of an 

MTS (x, y, ), the target point (xT, yT), the orientation error, eR, and distance 

error, eD, in a trajectory following case. The target travels along a timed 

sequence of points on a trajectory, which are represented by the pink dots. (B) 

The relative position and angle of a follower (xF, yF) to the leader (xL, yL) in 

the follower-leader case. (C) The distance, dW, separates the position of the 
MTS from its current point of impact on the wall; ΦW denotes the angle 

between the heading of the MTS and the angular position of current point of 

impact with respect to the center of the tank. 

We used two independent PD controllers to achieve 
position and direction control. This strategy can be applied to 
the case of low coupling between the forward propulsion and 
steering force. The controller is expressed as: 
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where, fa  and ra  control the actions of the main drive motor 

and steering motor, respectively, 1 1pK = , and 2 1pK =  are the 

proportional gains, and 1 1dK =  and 2 0.05dK =  are the 

derivative gains. Because we ultimately implemented Bang–

Bang control, proportional gains were set as unity for 

convenience. 0.05t s =  represents the time interval between 

two successive frames.  

The main motor generates forward thrust along the xm-axis 

direction of the MTS (see Fig. 2) and the steering motor 

generates torque about the zm-axis to control the left or right 

turn of the MTS. Based on the PD controller, the calculated 

control values are converted to motor action signals using a 

control signal converter which is expressed as follows: 
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where 6thF =  and 2thR =  represent the control signal 

thresholds along the forward and rotation directions, 

respectively. The thresholds are used to ensure that the output 

control signal is turned off when it is within a small range. 

The MTSs move much faster (2 BL/s) than conventional 
underwater vehicles [36] and are therefore difficult to control, 
since a transmitter can transmit only approximately 60 action 
signals (motion / stop) to an MTS in 1 second. Therefore, we 
reduced the swim speed and angular velocity of the MTS by 
adjusting the duty ratio between the motion signal and the stop 
signal within a certain period of time (~200 ms and 4 frames). 
For forward control, the duty cycle was set at 25%, indicating 
that the computer transmitted 1 forward signal for every 4 
frames and transmitted 1 stop signal for the remaining 75% of 
the time. For steering control, the duty cycle was set at 50%, 
indicating that 2 out of every 4 frames emits the steering signal 
(left or right turn) and stops steering for the remaining 50% of 
the time. 

Collective motion of multiple MTSs. To control the swarm, 

we implemented the leader–follower strategy as an example 

and test case. Based on the fish school model [37], the leader 

was designed to avoid collision with the arena boundary. We 

set the target turning speed, ( )t , as follows: 

 ( ) ( )sgn W Wt d  =  () 

where, Wd (cm) and W (degree) represent the distance and 

angle between the MTS and the point on the wall respectively; 

further details are presented in Fig. 3C. The turning speed 

( )t  values are converted to motor steering action signals as 

follows: 
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where, 0.03thR =  determines the repulsion strength from the 

wall on the leader. 

 



The following MTSs attempt to follow the leader without 

collision and maintain angular alignment with the leader when 

the distance is sufficiently short. The orientation error of the 

follower MTS corresponding to the desired direction is 

described by eR (t), and the position error of the follower MTS 

corresponding to the leader MTS is described by eD (t). When 

eD (t) is greater than 3BL (body length), the desired direction is 

set to point towards the leader. When the distance is small, the 

desired direction is set to match the orientation of the leader 

(see Fig. 3B). We defined:  
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where, ( )LX t  and ( )FX t  denote the positions of the leader 

and follower, respectively, ( )L t  and ( )F t  indicate the 

orientations of the leader and follower, respectively, and De  

represents the direction of the vector from the center of the 

follower to the center of the leader. We used the PD controller 

described in (2) for position and direction control. The 

calculated control values were converted to motor action 

signals using (3), while considering the values of 16thF =  and 

20thR = . 

In this task, as the number of MTSs increased, the existing 

communication bandwidth was no longer sufficient to adjust 

the duty ratio. Consequently, more time was required for the 

master controller of the centralized control method to receive 

and process all the information from the MTSs [27]. 

Therefore, we fixed the swimming speeds, which means 

forward signal is always on, and only controlled the heading 

directions of the MTSs. 

Each MTS was controlled by a separate thread in the 

computer even though the control signals were transmitted by 

the same hardware. The ID given by the detection and 

tracking program must be matched with the ID for wireless 

communication to achieve individual control over the MTSs. 

This problem was solved by sequentially transmitting a 

forward signal at the beginning of reach run to each individual 

MTS while maintaining a gap of 500 ms, to look for the MTS 

with the highest velocity during each period of time. 

Subsequently, a table was created for the pairs of the IDs and 

MTSs in the images. 

III. RESULTS 

A. Hydrodynamic interaction in the near-field 

Our test results demonstrated the hydrodynamic interaction 
when an advancing MTS passed by the side of a stationary 
MTS. The main effect was manifested in the change of angular 
velocity, which did not significantly affect the velocity. Fig. 4A, 
B depicts the positional states of the two MTSs at t=2 s and t=9 
s. When MTS2 swims past the side, the heading angle of 

MTS1 turns by approximately 20 degrees in 7 s. The results 
demonstrate that a strong hydrodynamic interaction is observed 
when the minimal distance is approximately 0.5 BL. 

 

Fig. 4. Hydrodynamic interaction of an MTS swimming past a stationary 

MTS. (A)&(B) The postures of the two MTSs at t=2 s and t=9 s. (C) The pink 

curve indicates the orientation angle of MTS1 with time, and the blue curve 

indicates the distance between two MTSs as a function of time. 

B. Target detection and tracking 

Accurate and robust information on the current MTSs’ 

postures is required to drive them in water. Up to 45 MTSs 

can be detected and tracked accurately by the proposed system. 

The average frame rate of real-time target detection is 22 FPS, 

which drops to 21 FPS when tracking is included (see Fig. 5). 

C. Path following of a single MTS 

We tested the tracking and control ability of the system by 

commanding a single MTS to follow a hexagon or a lemniscate 

curve. For both curves, four replicate experiments were 

performed, and the average deviation from the predefined path 

is 0.465 BL. The experimental results (in Fig. 6A, B) 

demonstrate that a good control performance was achieved 

when different forms of curves were considered as the desired 

paths. 

D. Collective motion of multiple MTSs 

Stable schooling behaviors of the MTSs were obtained 

from a random initial condition, which show that the platform 

can effectively control the collective MTSs (see Fig. 6C, D). 

The current control method can be used to form a swarm of up 

to 12 MTSs. The existing leader-follower strategy achieves less 

 



cohesive motion for more MTSs and effective strategies with 

consideration of hydrodynamic interactions for larger swarms 

require further research. 

 

Fig. 5. Results of tracking-by-detection. (A) A sample image of multi-target 
detection. (B) Close-up view of subfigure A, the red lines indicate the bows of 

the MTSs and the pink lines indicate the sterns of the MTSs. Inset shows the 

original image. (C) Sample images of multi-target tracking. (D) Close-up 
view of subfigure C; the yellow curves represent the trajectories of the MTSs 

and the gray numbers near the MTS represent ID numbers in the tracking 

program. 

 

Fig. 6. Controlled motion of MTSs. Path following of a hexagon curve (A) 

and figure-of-eight curve by a single MTS. The blue curve represents the 

prescribed path, the yellow curves represent the actual path traced by the MTS, 
and the pink points represent the current targets of the MTSs. (C)&(D) 

Snapshot of the MTSs and their trajectories (yellow lines) from the leader-

follower experiments. 

E. Time delay in the system 

Certain delays occur when controlling the swarm because 

various processes must be performed, from the movement of 

the MTS at a certain instant to the observation of its state and 

then to the movement control. A delay of up to 25 ms can 

occur during the process of capturing images owing to the 

capture frame rate of the network camera (approximately 40 

FPS). Following the image capture, the latency increases 

during the detection and tracking of dozens of MTSs using the 

computer vision technology in the host computer. The video 

frame rate is reduced from 40 FPS to approximately 22 FPS 

during the Target-Detection of the original video stream, after 

which the Target-Tracking of the video stream is performed, 

and the frame rate is reduced to approximately 21 FPS. 

For a single MTS, the motion of the propeller of the MTS 

to the position at which the command is based on faces a delay 

between 50 ms to 350 ms. The lower limit is obtained by 

measuring the time between the completion of the image 

acquisition and the signal transmission in the software. The 

upper limit is estimated by measuring the time between the 

acquisition of an image and the acquisition of an image that 

shows a noticeable motion of the MTS.  

IV. CONCLUSIONS 

In this study, an experimental platform of an underwater 
robot swarm was developed. The platform can perform real-
time tracking and detection to realize control strategies based 
on positions, orientations, and velocities. It can be used to 
analyze the effect of hydrodynamic interactions in underwater 
swarms because the propulsion mechanism and overall shape 
are similar to real underwater vehicles. Including these effects 
in control algorithms may be crucial for certain tasks of 
underwater swarms and can help obtain a better understanding 
of the behavior of fish schools. In the future, we aim to 
increase the pool size and the throughput of the control signals 
by adding more transmitters, which can decrease time delays 
and improve the control accuracy. 
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