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Abstract.

This study aims to investigate the feasibility of using an artificial lateral line

system for predicting the real-time position and pose of an undulating swimmer with

Carangiform swimming patterns. We established a 3D Computational Fluid Dynamics

simulation to replicate the swimming dynamics of a freely swimming mackerel under

various motion parameters, calculating the corresponding pressure fields. Using the

simulated lateral line data, we trained an artificial neural network to predict the

centroid coordinates and orientation of the swimmer. A comprehensive analysis

was further conducted to explore the impact of sensor quantity, distribution, noise

amplitude and sampling intervals of the artificial lateral line array on predicting

performance. Additionally, to quantitatively assess the reliability of the localization

network, we trained another neural network to evaluate error magnitudes for different

input signals. These findings provide valuable insights for guiding future research on

mutual sensing and schooling in underwater robotic fish.

1. Introduction

In fluid environments, the presence of swimmers, obstacles, and boundaries induces

local flow alterations, enabling hydrodynamic sensing. In comparison to sonar-based

or vision-based detection and localization methods, hydrodynamic sensing holds the

advantage of not relying on an active emitter. Indeed, hydrodynamic sensing is a

prevalent mechanism observed in numerous aquatic organisms [8, 9, 11, 28]. The lateral

line system in fish, composed of superficial neuromasts (SNs) that identify velocity and

canal neuromasts (CNs) that identify pressure gradients [4, 5], serves as an excellent

example of the sensory system. Using the lateral line system, fish can respond to

various flowing stimuli, such as cave fish navigating without relying on visual cues
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[18, 19]. Given the limitations of visual sensing in various scenarios, hydrodynamic

sensing emerges as a valuable component of an integrated sensing system for robots,

particularly in unstructured environments.

Substantial efforts have been invested in the development of artificial lateral line

(ALL) systems, often leveraging pressure sensors and/or shear sensors[13, 33, 34]. The

ALL can serve as either a stationary sensor array or, similar to its biological counterpart,

be attached to a moving vessel, depending on the specific detection task. The sensor

array typically encompasses a range of 9 to 20 sensors, and its application spans various

tasks, either experimentally or in simulation, relying on pressure or shear information.

Hydrodynamic sensing applications have demonstrated success in tasks such as flow

and object classification[10, 26, 29], flow velocity detection[14], carrier motion state

estimation[14, 35], tracking of moving spheres[11, 30], and the precise localization of

vibrating dipole sources [31, 33]. Dipole sources can accurately replicate the oscillatory

movement of fish tails, serving as a crucial method for the research of fish locomotion.

Initially, Yen treated the robotic fish tail as a dipole source and proposed a control

method to enable it to follow another dipole source with desired phase difference[32]. Liu

integrated ALLs onto a 3D-printed shell and achieve tracking of a moving dipole source,

albeit limited to scenarios where the oscillating source frequency, amplitude, oscillation

direction, and size are known[16]. Abdulsadda investigated an analytical model-based

estimation approach, enabling the tracking of a dipole source’s position even when its

velocity and amplitude are unknown[1]. Qiu integrated ALLs onto robotic fish, allowing

it to locate dipole sources while swimming freely[21]. While significant progress has

been made in research based on dipole sources, it is essential to acknowledge that the

dipole source merely serves as a simplified model of fish tail oscillation. There still

exists considerable disparity between this model and the actual swimming behavior of

fish. Therefore, sustained efforts are required to investigate the complex fluid-structure

interaction effects between fish and water flow.

Initial studies have employed an analytical approach, delving into flow field analysis

to discern crucial flow characteristics such as zero and maximal points[11]. However,

such approach is typically applicable only to inviscid scenarios and simple objects, such

as spheres or dipole sources. In recent years, more advanced pattern recognition and

matching techniques, such as beamforming technique[7] and template matching[6, 20],

have been successfully employed. The recent advancements in machine learning,

particularly in deep neural networks (DNN), have facilitated the intricate capture of

complex patterns and the acquisition of substantial non-linear mappings from extensive,

high-dimensional datasets. DNN approaches have been effectively implemented in

various applications, including the classification of wake types (2S, 2P, etc.)[3],

localization of a passing sphere in 2D [30], and the shape classification of objects passing

through a 2D space [29]. However, artificial systems’ sensing capabilities still fall short of

those found in animals. In existing studies, certain degrees of freedom of the swimmer
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Figure 1. The perception of a freely swimming mackerel by the ALL array.

We configured an idealized ALL array in a cubic arrangement, disregarding its volume

and influence on the flow field. A mackerel, swimming freely, passes alongside the

array in an arbitrary direction. Through CFD simulations, hydrodynamic information

regarding the flow field was extracted during the fish’s movement, simulating the signal

input to the ALL. Leveraging flow field information, the swimmer’s position and pose

were systematically tracked in a continuous manner.

are often constrained, and there is no significant variation in the spatial relationship

between the target and the swimmer [22]. Persistent efforts are needed to achieve more

diverse tasks with enhanced performance, ultimately surpassing the capabilities of their

biological counterparts. In this article, we demonstrate the feasibility of continuously

predicting the position and pose of a freely swimming mackerel over a period of time and

explore critical design parameters. A Long Short Term Memory (LSTM) neural network

is trained based on local pressure information. We compare the predicting performance

with different sensor quantity, Signal-to-Noise ratio, sampling time and region size. An

additional network is trained to evaluate the confidence of the predictions.

2. Method

2.1. Input data

Our input data is derived from a three-dimensional CFD simulation of a Carangiform

swimmer in free space (see Fig. 1). The shape and kinematics of the swimmer model

are based on scans of real fish and biological observations. The swimmer’s deformation

follows a traveling wave pattern, expressed as A(s) = a0 + a1s + a2s
2. The parameters

for A(s) are meticulously adjusted to replicate the amplitude envelope observed in real

fish [12, 25], with specific values of a0 = 1, a1 = −3.2, a2 = 5.6, and k = 2π/1.0. The

swimmer exhibits free locomotion in water, with its motion governed by the Newton-

Euler equations. The fluid dynamics problem is solved using the finite difference method,

incorporating the immersed boundary method to couple the swimmer with the fluid.

Dimensionless units are employed, with the swimmer’s body length (BL) serving as
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Table 1. The kinematics parameters of the simulation cases

Case No. 1 2 3 4 5 6

A Ac = 0.2 1.05Ac 0.95Ac Ac Ac 1.05Ac

λ 1.0 1.0 1.0 1.05 0.95 0.95

the length unit and the undulation period standardizing the time unit. The viscosity,

denoted by υ, is set to 1/15000, resulting in a corresponding Reynolds number around

4000. The swimming speed is about 0.3 BL per cycle. This simulation has been employed

and validated in prior studies [17, 23].

To accumulate a substantial dataset suitable for training, we utilized a coordinate

transformation approach to obtain pressure information perceived by sensors at various

positions with respect to swimmers in different orientations. The ALL system can

function either as a stationary sensor array or, akin to its biological counterpart, be

attached to moving objects depending on the specific detection tasks. Here, following

the former method, we arrange the sensors in a cubic grid across all or selected grid

points, forming a sensor array as illustrated in Figure 1. The sensor array is placed

within the wake of the swimming fish, acquiring pressure information from the wake to

predict the position and orientation of the swimming fish. For the flow field generated

through simulation, we began by randomly placing a point near the swimmer to serve

as the center of the array and selecting a random direction as the orientation. Here,

the volume of the sensors and their impact on the flow field were disregarded. After

determining the number and arrangement of the sensor array, we recorded the pressure

signals at each sensor’s location when the swimmer passed by as the data collected by the

ALL. The relative position of the swimmer to the sensors’ center was then transformed

from the swimmer’s coordinate system to the local coordinate system of the sensor

array. As a result, 8000 sets of trajectories with different random orientations of the

swimmer were generated. For each trajectory, we segmented it into time series with a

time interval of 0.025 and a total of 30 time points, corresponding to 0.75 periods of

undulation. To enhance the robustness and generality of predictions, we slightly varied

the kinematics parameters, with specific details provided in Table 1.

2.2. Prediction neural network

For the analysis of time series, we adopted the widely-used LSTM neural network.

Conventional Recurrent Neural Networks (RNNs) serve as an extension to feed-forward

neural networks for dynamic classification tasks, limited in their ability to look back

in time due to issues like vanishing or exploding signals. LSTM was introduced as

a strategic resolution to these impediments, with its fundamental concept centered

around the preservation of the cell state [24], as shown in Fig. 3. As time progresses,

the cell state is updated in a manner that retains important input information while

forgetting unimportant and outdated information. The specific structural parameters

Page 4 of 15AUTHOR SUBMITTED MANUSCRIPT - BB-103712.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Author guidelines for IOP Publishing journals in LATEX2ε 5

Table 2. The structural parameters of the LSTM network

Parameter Number Number Dropout Batch Learning Optimizer Loss

of layers of nodes rate size rate function

Value 2 200 0.1 64 0.001, 0.0001 Adam MSE

Figure 2. (a) Structure of RNN. RNNs range from partly to fully connected,

typically incorporating three components: the input layer, the hidden layer, and

the output layer. (b) Structure of LSTM. LSTM is a distinctive type of RNN,

characterized by its use of a cell state to preserve essential information while discarding

less relevant portions.

of the network is shown in Table 2. In this context, the network takes simulated

pressure information as input and outputs a six-dimensional vector consisting of the

fish’s current centroid coordinates and velocity direction at the present moment. We

employed a dropout rate of 0.1 during training to prevent over-fitting. After 100 epochs,

the residual values stabilized.

2.3. Error estimation network

For any input, the neural network generates a prediction, necessitating a systematic

approach to gauge its confidence. At least, a method is needed to determine if

information can be gleaned from the input signal and to discern the reliability of

predictions. Here, we propose a similar approach: employing another LSTM neural

network with identical inputs, we train it to predict errors in position and pose

predictions, offering a quantitative measure of confidence. The natural metric for

prediction errors is the distance ∆ between the actual and predicted positions of the

swimmer. However, in instances of complete unreliable predictions, the associated

error becomes unbounded. An additional consideration is the effective range of the

lateral line, limited to a few body lengths, where errors surpassing this threshold
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indicate unreliable predictions. Consequently, we employ the ∆c = tanh(2∆) function

to compress errors at the large end, directing our focus towards prediction confidence.

This methodology uniformly integrates cases of complete unreliability while concurrently

incorporating instances where predictions exhibit a certain level of reliability. In training

the confidence network, we maintain the prediction network constant, utilizing actual

errors as the training dataset. Notably, 10% of the training data comprises null data,

exemplified by white noise with an amplitude equivalent to 5% of the input.

3. Results

3.1. Predictions on position and pose

The distribution of pressure within the vortex is shown in Fig.3a. As depicted, the

pressure within the vortex exhibits a unique spatial structure, displaying identifiable

features. Over time, this pressure structure propagates in the opposite direction of the

fish’s movement, accompanied by a significant decrease in amplitude. These features

suggest the presence of discernible patterns within the pressure field, closely linked to

the position and orientation of the preceding fish.

We utilize the centroid coordinates of the fish and the direction vector to represent its

position and orientation (Fig. 3b), respectively. The coordinates of the fish body’s

centroid in the sensor coordinate system are represented by −→x , −→y , and −→z . The

direction vector of the fish body’s velocity is denoted by
−→
V , with Vx

−→ex , Vy
−→ey , and

Vz
−→ez as its components along three coordinate axes. Fig. 3c depicts the progressive

reduction of training error with increasing epochs, indicating robust convergence in

the model. After 50 epochs, the rate of change slows down, and by 300 epochs, it

reaches a plateau. The loss value of the plateau is about 0.001, corresponding to an

average error of 0.03 BL. Fig. 3d illustrates the predictive capability of the positioning

neural network PredNet over a certain period. As a reference, the solid line represents

the actual values. The outcomes reveal that, throughout the entire swimming duration,

PredNet consistently and accurately traces the fish’s location and orientation, indicating

its ability to effectively capture position and pose information within the pressure field.

3.2. Impact of sensing region size

The arrangement of the sensor array significantly impacts the effectiveness of

information gathering[15], with one crucial factor being the distance between adjacent

sensors, influencing the dimensions of the entire ALL system. Clearly, a larger sensor

distance results in more distinctive information, enhancing the richness of acquired data

with the same quantity of sensors. However, this inevitably leads to an enlarged ALL

array, posing greater manufacturing challenges and costs, along with potential risks such

as a more pronounced impact on the flow field structure and increased detectability by

other entities. Here, we quantitatively compare the positioning performance of the ALL
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Figure 3. Prediction of Fish Body Position and Pose (a) The spatial

distribution of pressure in the surroundings of the fish’s body. (b) Diagram illustrating

the representation of fish position and orientation. (c) Training loss as a function

of epochs. (d) Example predictions of PredNet for the fish body coordinates and

the direction vector over a certain period. The actual values are also provided as a

reference.
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under different distances. As shown in Fig. 5b, the error gradually decreases with

increasing distance, aligning with our expectations. This decline begins to plateau after

reaching 0.02BL and almost halts after reaching 0.1BL.

3.3. Impact of sensor quantity

Initially, an analysis was conducted to assess the impact of the number of sensors on

predictive performance. In most cases, maintaining consistency in the arrangement

while studying quantity relationships poses a significant challenge. In this study, we first

examined the results when the sensor array maintained a consistent cubic configuration,

corresponding to sensor quantities of 8, 27, and 64, respectively. The resulting prediction

errors are denoted by red squares in Figure 5c. Additionally, we gradually increased the

number of sensors from a small cube array to a large cube array, in the order of length,

width, and height, thereby obtaining results for various irregular configurations with

different quantities. The prediction errors for these configurations are represented by

blue circles in Figure 5c. Despite the lack of a uniform configuration in the latter sensor

arrays, they do not rigorously reflect the error levels across all configurations under

the same quantity. However, they serve to bridge the gaps between adjacent cubic

configurations, providing a more detailed characterization of the trend in prediction

error with varying sensor quantities. Evidently, a higher quantity of sensors affords a

more comprehensive information pool, thereby favoring the predictive capabilities of

the prediction network[15]. However, this advantage is accompanied by a significant

escalation in the cost and intricacy of array design[2]. Consequently, a delicate balance

must be struck between the number of sensors and the precision of predictions. Fig.

5c delineates PredNet validation error as the function of the number of sensors. For

sensor quantities less than 8, a marked reduction in error is observed with an increasing

number of sensors. Subsequently, this effect tends toward saturation, with negligible

alterations post the deployment of 24 sensors. It is noteworthy that this decline is

non-monotonic, suggesting the potential for an increase in error with a higher sensor

count, a phenomenon also documented in previous study as a plausible manifestation

of interference among distinct sensor inputs [10].

3.4. Impact of sampling time

Clearly, longer time series tend to contain richer information, but this comes with an

increased sampling difficulty. Acquiring extensive samples over prolonged duration is

often impractical in real-world applications. Here, we assess the impact of varying time

series lengths on the network’s predicting accuracy. The results in Fig. 5d indicate

a gradual reduction in PredNet error with an increase in the duration of individual

sequences. This effect approaches saturation after a sequence of 0.5s (corresponding to

0.5 periods of undulation), with marginal improvement in positioning accuracy observed

with further increases in duration.
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Figure 4. (a) PredNet loss at different spatial positions. (b) PredNet

predicted distance versus actual distance. The distribution of PredNet errors

on the validation set across spatial positions is presented. The results indicate that

the PredNet demonstrates excellent predictive performance throughout the entire

experimental range.

3.5. Impact of Signal-to-Noise Ratio

In practical applications, data sampled by sensors inevitably encompass the influence of

various types of noise[15], such as complex water flow conditions, the inherent oscillation

of the fish’s body, or fluctuations in electronic device signals [15, 22, 27, 33]. To validate

the robustness of PredNet and assess the impact of noise on localization performance,

we compared the localization errors under different Signal-to-Noise Ratios (SNR). As

depicted in Fig. 6a, with the continuous reduction in SNR, the accuracy of localization

progressively declines, aligning with our expectations. Notably, this decline is non-

linear, exhibiting a sharp increase in errors after SNR reaching 2.5, affirming that a

certain level of noise does not compromise the identification of relevant information

in the flow field by ALL. Additionally, the predicted distance as a function of actual

distance under different SNRs is presented in Fig. 6b. It can be visually observed that

the increasing noise predominantly affects areas farther from the fish, while proximal

regions remain largely unaffected. This phenomenon arises due to the attenuation of the

wake, resulting in smaller signal amplitudes in distant areas that are more susceptible

to noise interference, aligning with physical principles.

3.6. Robustness of the prediction

We trained another neural network, ConfNet, to predict the reliability of the

prediction results (see Method section for details). The outcomes, illustrated in Fig.

7a, reveal a stabilization of loss around 0.001 after approximately 50 epochs. Here, we

present the distribution of ConfNet prediction errors relative to actual errors within
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Figure 5. (a) PredNet loss on the validation set as the function of hidden size.

(b) PredNet loss on the validation set as the function of adjacent sensors’ distance.

(c) PredNet loss on the validation set as the function of sensor quantity. The red

squares represent the results obtained from a sensor array arranged in a standard cubic

configuration, while the remaining data represents results obtained from randomly

selecting the corresponding number of sensors from the cubic array. (d) PredNet loss

on the validation set as the function of time sequence length.

the validation set (Fig. 7b). The perceptible alignment of the data distribution

with a straight line suggests that ConfNet adeptly forecasts errors for data points at

various positions. However, the accuracy of predictions decreases as the actual error

increases. This can be attributed to the fact that data points with larger errors are

fewer in number, and such points are often located farther from the fish’s body. This

implies that the vortex has already undergone sufficient decay, resulting in relatively less

information, making it more challenging for the neural network to capture its features.

Fig. 7d illustrates the distribution of ConfNet errors at different spatial positions,

further demonstrating that the increased difficulty in prediction is due to the increasing

distance.
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Figure 6. (a) PredNet loss on the validation set as the function of SNR.

In this context, SNR is expressed as SNR =
Asig

Anoi
, where Asig denotes the average

amplitude of the pressure signals and Anoi denotes the average amplitude of the noise.

(b-e) Predicted distance versus actual distance for different SNR. Figure b

to e represent scenarios with SNR of 10, 5, 3.3 and 2, respectively.

4. Discussion

Our results numerically establish the practicality of employing the lateral line system

to discern the position and pose of a free-swimming undulatory swimmer, which holds

crucial implications for understanding the sensory mechanisms of fish. Previous studies

have shown that fish predominantly rely on their lateral line for perception within a range

of 5 body lengths (BL)[28]. So far, this perception method has been demonstrated at

scales ranging from a few centimeters to several tens of centimeters, depending on the

size of sensors[29]. In general, near-field hydrodynamic imaging functions effectively only

over short distances, and is most accurate within this range. Our research demonstrates

that accurate prediction of the position and posture of preceding fish can be achieved

solely through pressure within a 4 BL range. This strongly suggests that vortex tails

contain rich information about swimmers, which is valuable for understanding the

functionality of biological lateral lines and designing artificial sensing systems. Our

findings further affirm that the vortices generated by undulatory swimming, especially

the pressure component, carry sufficient information about the swimmer, which enables

information recipients to accurately identify its location and orientation within a 4BL

distance.

In natural environments, sensors interact significantly with fluids. For instance, in

the case of fish lateral line systems, the swimming motion of fish generates distinct

flow patterns in their vicinity. This alteration of the ambient flow not only complicates
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Figure 7. (a) Training loss for ConfNet as the function of training epoch. (b)

Predicted error versus actual distance on the validation set. (c) Spatial distribution

of ConfNet loss. (d) ConfNet loss as the function of hidden size. As the hidden size

increases, the loss initially shows a decreasing trend, but starts to rise after the hidden

size exceeds 200.

the existing flow dynamics but also poses challenges in acquiring accurate flow field

information through the lateral line system. Therefore, the primary challenges in

perceiving swimming fish in real-world scenarios encompass two aspects: extracting

position and orientation-related features from the wake of the preceding fish, and

mitigating the influence of sensor devices on the flow field. In this study, we primarily

address the former issue by investigating the feasibility of identifying the position and

orientation of a freely swimming mackerel based on pressure signals from an ideal sensor

array. Although there remains a disparity compared to real perceptual scenarios, our

findings hold significant implications. Moreover, disregarding the volume of the sensors

endows our study with several irreplaceable advantages compared to many other studies.

For instance, through coordinate transformation-based methods, we can obtain a wealth

of training data encompassing various orientations of fish bodies. Otherwise, with a fixed

sensor array in place, the computational costs required for CFD work would increase by
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several thousand times, making training neural networks an almost unattainable task.

Evidently, both pressure and flow velocity, or shear information, hold significant

importance. Perception in actual fish lateral line systems relies on both pressure and

flow velocity signals simultaneously. Ideally, knowledge of one component allows for

inference of the other, and the combined use of both signals can enhance prediction

accuracy. However, simultaneously deploying two types of sensors significantly increases

the complexity of design and sampling in practical applications. Here, we choose to

utilize only pressure as the input signal, as artificial lateral line pressure sensors are

more mature compared to velocity sensors and most ALL studies relied on pressure

sensors. Thus, predictions based on pressure hold greater practical significance. Our

findings confirm that pressure alone contains sufficient information of the position and

orientation of swimmer. The consideration of shear information and their combined

application will be the focus of our forthcoming efforts, tailored for more intricate

environments and challenging perception tasks.

Our research holds significant implications for the mutual perception and schooling of

multiple robotic fish. While ALL have demonstrated their utility in aiding underwater

robots with increasingly complex perception tasks, the current ALL’s sensing capabilities

still lag far behind the lateral line of real fish. To the best of our knowledge, there

is currently no mutual localization system for freely swimming robotic fishes. Our

numerical results demonstrate the feasibility of achieving mutual localization in different

directions based on vortex street interactions, providing insights into the design and

arrangement of ALL. Looking ahead, we aim to factor in the influence of ALL on the

flow field and apply our perception methods to real-world sensing challenges.
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