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Near-field hydrodynamic interactions in active fluids are essen-
tial to determine many important emergent behaviors observed,
but have not been successfully modeled so far. In this work, we
propose an effective model capturing the essence of the near-
field hydrodynamic interactions through a tensorial coefficient
of resistance, validated numerically by a pedagogic model sys-
tem consisting of an Escherichia coli bacterium and a passive
sphere. In a critical test case that studies the scattering angle
of the bacterium–sphere pair dynamics, we prove that the near-
field hydrodynamics can make a qualitative difference even for
this simple two-body system: Calculations based on the proposed
model reveal a region in parameter space where the bacterium
is trapped by the passive sphere, a phenomenon that is regularly
observed in experiments but cannot be explained by any exist-
ing model. In the end, we demonstrate that our model also leads
to efficient simulation of active fluids with tens of thousands of
bacteria, sufficiently large for investigations of many emergent
behaviors.

bacterial motion | near-field hydrodynamics | low Reynolds number fluid

Dense suspensions of microorganisms swimming in complex
environments are ubiquitous in nature. The hydrodynamic

interactions (HI) among many thousands of microorganisms and
the surrounding boundary give rise to novel emergent behaviors
at macroscopic length scales, for example, self-organization (1–
3), active turbulence (4, 5), and bacterial “superfluid” (6, 7). Such
behaviors not only are important for fundamental bioprocesses
[e.g., fluid transport in bacterial colonies (8)] but also have prac-
tical implications [e.g., design of microfluidic structures (9) and
artificial microswimmers (10, 11) for desired transport proper-
ties]. To understand these large-scale behaviors in active suspen-
sions, it is essential to have a simple model that is able to describe
the near-field HI with both physical effectiveness and computa-
tional efficiency, as negligence of near-field HI is known to lead
to erroneous system dynamical behaviors and structures (12, 13),
and accurate description of the near-field HI by direct numerical
calculations is limited to few-body systems, due to computational
complexity (14, 15). However, despite its fundamental impor-
tance, development of such a model of near-field HI has been a
long-standing problem, and is the subject of this work.

For a system of only a few microorganisms, the HI can be
evaluated numerically at arbitrary accuracy by brute force [e.g.,
the method of Stokeslets (14) or boundary element method
(15)]. From these studies, it is demonstrated that, by treating an
Escherichia coli bacterium as an assembly of one head and helical
flagella with no-slip boundary (Fig. 1A), HI in the near-field limit
is essential for bacterial dynamical behaviors (16). However,
for large suspensions with tens of thousands of microorganisms,
the computational complexity to accurately describe the HI for
swimmers (micrometers in size) at near-touching scenario (sur-
face distance around 10 nm) makes such brute force approaches
infeasible in the foreseeable future. A simple model of the HI,

which provides explicit functional form for any given swimmer
configurations, is needed.

At this point, it is worthwhile to point out that a model of
microoganisms (which describes the intrinsic surface properties
of a microorganism, e.g., squirmer model of a rigid spherical
cell with prescribed surface velocity that mimics spherical cili-
ates) should not be mistaken for our focus here of a model of
HI (which generalizes the behavior of the stress distribution on
the surface of the microorganism as a function of configuration).
One good example of the latter is the dipole model, which treats
the stress distribution of one bacterium as a force dipole (17, 18).
This simple model is successful in predicting the enhanced diffu-
sion of tracer particles (19, 20), but is only accurate for the far
field and requires a cutoff size to avoid the unphysical divergence
at the location of the force dipole.

For E. coli bacteria, a more realistic model treats each bac-
terium as two beads connected by a rigid rod, and models the
stress distribution as two point forces located at the centers of
these two beads that are separated by a length of l (Fig. 1B). In
this two-bead model, the tail bead is propelled by a force Fact,
provided by flagella that are not treated explicitly. Then, accord-
ing to the force balance on each bead, the forces exerted on fluid
are simply Feff and−Feff for the head and tail beads, respectively.
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Fig. 1. The system at study. (A) Our model E. coli. (B) The bacterial stress distribution is described as two point forces (Fh = Feff for the head and Ft =−Feff

for the tails) separated by l. The propulsive force arising from the spinning of the tails is Fact . (C) Our pedagogic system of one bacterium (red) and one
passive sphere (blue).

Models of this type have been applied for both pushers and
pullers (21) in various studies, including bacterial motion near
a plane wall (22), two hydrodynamically interacting bacteria (23,
24), and the collective motions in a suspension (25). However,
in the near-field limit, the stress distributions on bacterial sur-
faces change so dramatically that the use of two fixed point
forces becomes an oversimplification incapable of capturing the
essence of the HI. Insisting on the use of such an oversim-
plification brings severe unphysical consequences, for example,
invariant Feff with respect to a nonactive bacterium and invariant
vbac (bacterial self-swimming velocity) independent of the sur-
rounding environment (21, 25), which inevitably leads to artificial
overlaps between bacteria. To solve the catastrophic overlap
problem shared by this type of model, one brute-force approach
commonly used is to introduce a repulsive steric interaction.
But the use of an effective repulsion in place of the near-field
hydrodynamics leads to erroneous predictions in both individual
swimming motion (such as incorrect estimate of Feff and unreal-
istically fast separation for bacterial pairs in close proximity) and
macroscopic structures [such as clustering (13)].

The near-field HI between two microorganisms has also been
modeled for eukaryotes that are simplified as squirmers (26).
Yet the study is severely limited due to the use of ideal assump-
tions of spherical shape and a prescribed surface velocity that
is configuration independent (27). While the former assumption
makes the squirmer unable to respond to the local strain of the
external flow, the latter assumption is qualitatively inconsistent
with experimental observations (28) and leads to unphysical work
output that diverges at zero surface distance (26).

In this work, we examine the key ingredients of the exist-
ing two-bead model upon which we can build our model, as
well as the defects of the existing two-bead model that need to
be corrected. Since the characteristic size and speed of most
bacteria are about 1 µm and 10 µm/s, respectively, in water,
the corresponding Reynolds number is very low (10−5 to 10−2).
Therefore, bacterial flows are typically studied approximately by
the linear Stokes equation. By exploiting the linearity of the
governing Stokes equation, the many-body HI problem can be
reduced to the pedagogic problem of the HI between one passive
sphere and one bacterium (26, 29). Specifically, the pedagogic
system presented in this study consists of one free passive sphere
with radius Rs , and an E. coli–shaped bacterium with fixed bac-
terial motor rotation rate ω0 (30), both immersed in a fluid of
viscosity µ (Fig. 1C). The bacterium is modeled as an assembly of

a spherical head of diameter σ defined as the unit length, and two
helical flagella, with a gap δ in between for computational stabil-
ity. The HI are then quantitatively evaluated by solving the linear
Stokes equation with no-slip boundary conditions on the sur-
faces of the passive sphere and the bacterium, at configurations
defined by the surface distance d , incoming angle θ (negative θ
corresponds to the “nose down” situation with bacterium mov-
ing toward the passive sphere), and Rs , as illustrated in Fig. 1C.
The Stokes equation with moving boundaries can be routinely
solved using the numerical method of Stokeslets (14, 31), where
the boundary surfaces are divided into a large number of small
regions, and the stress distributed on each region is then approx-
imated by a point force. This method is based on the fact that the
creeping flow u at location r′ due to each point force f at location
r0 is analytically available as

u(r′)=G(r′, r0)F(r0), [1]

where G is a fundamental solution to the linear Stokes equation
and is called a Stokeslet. The Stokeslet in three dimensions mani-
fests in the tensor form of Gij (r′, r0)= (1/8πµ)(δij/r + rirj/r

3),
with r ≡ |r| ≡ |r′− r0|. Then the solution of the entire flow field is
the sum of all of the flows, each generated by one of these point
forces.

The dependence of instantaneous speed of the passive sphere,
|vs |, on the surface distance d at a few typical incoming angles θ
and sphere radii Rs is shown in Fig. 2A. At large d , |vs | always
decays as d−2, regardless of θ and Rs . This power-law decay is
consistent with previous experimental observations (18) as well
as the predictions of the dipole model (19). At intermediate
d , |vs | behaves qualitatively differently from the dipole predic-
tions; for example, at Rs =50, a nonmonotonic behavior of |vs |
is observed.

To explain |vs | at intermediate d , we follow the existing two-
bead model by treating the bacterium as two point forces. To
do so, we add all of the point forces on bacterium head (tail)
as obtained in Stokeslets method and place the sum Feff =∑Nhead

n=1 Fn (−Feff for the tail as dictated by the force-free condi-
tion) at rh (rt ), the geometric center of the head (tail). Induced
by these two point forces that are separated by l (Fig. 1B), the
motion of the passive sphere follows Faxen’s law,

vs =
(
1+

R2
s

6
∇2

)
u(r)

∣∣∣
r=r0

, [2]
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Fig. 2. (A) The |vs| as a function of d for a few typical θ and Rs, obtained from the method of Stokeslets (symbols), the dipole model (dash-dotted lines),
and the two-bead model (solid lines). (B) The location of the point force that models the tail, obtained through a fit of our numerical results. The two red
dots in the Inset illustrate the locations of the two point forces. Different symbols and colors in B represent different species in SI Appendix, Table S1. The
dash-dotted line indicates location of the geometric center of the tails.

where r0 is the location of the spherical center, and u(r) is
the flow generated by the two point forces. Using Feff and
the fixed locations of the point forces as input, the predictions
of vs obtained from Eq. 2 agree very well with our numeri-
cally obtained results from the Stokeslets method at both large
and intermediate d (Fig. 2A). The nonmonotonic behavior
observed for large passive sphere cases is due to the competi-
tion between Rs and the characteristic length of the flow gradient
dictated by l .

The above quantitative agreement regarding vs supports a key
ingredient of the existing two-bead model that treats the loca-
tions of the two point forces as bacterial intrinsic properties.
The validity of this treatment can be further demonstrated, using
bacteria of different tail shapes characterized by the following
parameters: helical length Ltail, helical radius Rtail, and number of
helical pitches Np (specific choices of these parameters are avail-
able in SI Appendix, Table S1). For each specific bacterial shape,
using the method of Stokeslets, we again compute the stress dis-
tribution fn on the bacterial surface and the motion of the passive
sphere vs at many different configurations defined by d , θ, and
Rs . For each configuration, we again place Feff =

∑Nhead
n=1 Fn at

rh , the geometric center of the head, and place −Feff at a loca-
tion on the longitudinal axis that is l away from rh (Fig. 2B,
Inset). Then, according to Eq. 2, l can be treated as a free param-
eter and obtained through a fit of numerically obtained vs at
all configurations. The fitting result for each specific bacterial
shape is illustrated in Fig. 2B, where the location of the −Feff for
each bacterium shape is very close to rt , the geometric center of

the tails (dash-dotted line in Fig. 2B), supporting our argument
that the locations of the two point forces are bacterial intrinsic
properties.

However, unlike the predictions of the existing two-bead
model (21, 25) that bacterial motion vbac and the force Feff are
both invariant when the bacterium is swimming among passive
objects, our numerical results show otherwise. This qualitative
difference can be best illustrated as in Fig. 3A, where we show
|vbac| and |Feff | (Fig. 3A, Inset) as functions of d , at θ=−π/2 (the
bacterium moving toward the center of the passive sphere) for
two typical sphere radii Rs =1 and Rs =100, respectively. For
d� 1, the influence of the passive sphere on the bacterium is
negligible, so that |vbac| and |Feff | reduce to their correspondence
for a solitary bacterium: v0

bac and F 0
eff , respectively. At smaller

d , we see a significant decrease in bacterium swimming velocity,
from v0

bac to |vbac|(d =0.1)≈ 0.3v0
bac in the system with Rs =100,

presumably due to the increase of effective resistance felt by
the bacterium. In the same small d regime, we see that |Feff |
increases noticeably from F 0

eff .
We propose that the key to the observed strong dependence

of vbac and Feff on surface distance d is the near-field HI between
the bacterium and the sphere, which can be quantitatively
modeled by the resistance tensor ξ, defined as inFh

Fs

Ft

Th

= ξ ·

 vh
vs

vt − v0

Ωbac

with ξ=

 ξhh ξhs ξht 0
ξsh ξss ξst 0
ξth ξts ξtt 0
ξTU
hh ξTU

hs 0 ξTΩ
hh

, [3]

Fig. 3. Configuration-dependent vbac and Feff . (A) Our model predictions based on Eq. 3 (solid lines) and numerical results from the method of Stokeslets
(symbols) for |vbac| and |Feff | (Inset), with Rs = 1 (black) and Rs = 100 (red). (B) All numerical data obtained from the method of Stokeslets (symbols) collapse
onto a master curve as predicted by Eq. 4 (solid line). Shaded area represents k(x− x0)< y< 1.2× k(x− x0). The existing two-bead model predicts that all
data would collapse to a single point (blue star).
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where Fh =Feff , Ft =−Feff , and Fs =0 are the forces exerted
by the bacterial head, tails, and the passive sphere, respectively;
Th ≡Feff × (rh − rt) is the torque exerted by bacterial head; vh ,
vt , and vs are the velocities of the bacterial head, tails, and
passive sphere, respectively; Ωbac≡ (rh − rt)× (vh − vt)/l2 is the
bacterial rotation around its center of mass; and v0≡ ξ−1

tt ·Fact

(see SI Appendix for details of derivation). The last row of Eq.
3, ξTU

hh · vh + ξTU
hs · vs + ξTΩ

hh ·Ωbac =Feff × (rh − rt), is just the
torque balance condition previously derived (32), which is triv-
ial for the one-dimensional problem (e.g., the bacterium moving
toward the center of the passive sphere) but becomes nontrivial
when the rotational motion is strong.

Since the tail flagella are very thin (∼ 10 nm) compared
to the head (∼ 1 µm), in the simplest consideration, we can
assume that the tails are not as affected by the near-field HI.
That is, the force Fact arising from the spinning of the tails
around the longitudinal direction is configuration independent,
and the terms in ξ involving the tails retain their far-field val-
ues. Then the near-field HI only appears in tensor elements
ξhh , ξhs , ξss , ξTU

hh , ξTU
hs , and ξTΩ

hh , and we can solve Feff and
vbac as functions of Fact and ξ. In the d→ 0 limit, lubrication
theory shows that these relevant tensor elements can all be
written as analytic functions of only one parameter, the nondi-
mensional surface distance 2d/(0.5+Rs) (33). To keep our
model simple, at finite d , we write these tensor elements by
extrapolating the analytical lubrication forms regarding the sin-
gle parameter 2d/(0.5+Rs). Thus, using Fact, ξ, and the fixed
locations of the two point forces as input, we can solve Eq. 3
for Feff and vbac.

As illustrated in Fig. 3A, our model captures the near-
field HI by reproducing the slowing down of the bacterium
as it closes in the passive sphere at θ=−π/2, for two typ-
ical radii, Rs =1 and Rs =100. Specifically, our model pre-
dictions for both Feff and vbac show a quantitative agreement
with numerical results from Stokeslets method at all ranges of
d . More importantly, our model naturally amended the disas-
trous overlap problem in the existing two-bead model: In the
limit of d→ 0, the terms in the resistance tensor that corre-
spond to the relative motion between the bacterial head and
the passive sphere diverge, leading to an infinitesimal relative
motion (33).

Below, we test whether the proposed idea of modeling the
near-field HI entirely through the resistance tensor can be
applied to more general systems where an analytical form may
not be available. Using, again, the approximation that tail flagella
are thin (so that Fact is a constant, and terms in ξtt are constants
and much larger than terms in ξst ), it can be shown that Eq. 3
leads to a generic linear relation between Feff and vbac regardless
of the shapes of the bacterial head and the passive object (see SI
Appendix for derivation):

|vbac|
v0

bac
= k ×

(
|Feff |
F 0

eff
− x0

)
, [4]

where the slope k =(F 0
eff/F

0
eff −Fact) and intercept x0 =Fact/F

0
eff

are both bacterial intrinsic properties. As illustrated in Fig. 3B,
this generic linear relation is strongly supported by the collapse
of all data obtained through the method of Stokeslets onto the
predicted straight line, in comparison to the predicted collapse
onto a single point |vbac|/v0

bac = |Feff |/F 0
eff =1 by the existing two-

bead model. While our calculations show that the simplified
treatment of Fact as a constant is responsible for the deviations
between the predicted straight line and our numerical data, these
deviations are small, supporting our argument that the change in
Fact is not essential for our simple model. The qualitative agree-
ment between our predicted linear relation and numerical data
shows that a qualitative description of the resistance tensor can

be sufficient in capturing the essence of the near-field HI, and
therefore applies to more general systems with bacterial head of
arbitrary shapes.

In the following, we show that our effective model of the near-
field HI is essential in obtaining the correct bacterial dynamic
behavior through an investigation of the scattering angle out of
the bacterium–sphere pair dynamics. Considering a free passive
sphere at the origin and a bacterium at x =−∞ and y = b mov-
ing toward the +x direction, we studied the dependence of the
scattering angle ψ on impact parameter b/Rs and bacterium–
sphere size ratio l/Rs (Fig. 4A). Our model predicts that there
exists a critical size for the passive sphere in the presence of
near-field HI. For spheres larger than this critical size, the bac-
terium can be entrapped by the passive sphere with an orbital
motion (Fig. 4B), which can be related to a stable fixed point
in the two-dimensional phase plane defined by d and θ (Fig.
4D). This entrapment of bacterium is also obtained numeri-
cally using the method of Stokeslets (SI Appendix, Fig. S2), and
has been regularly observed in experiments (32, 34). Contrar-
ily, no such entrapment can be reproduced by existing models
that use a repulsive steric interaction in place of our tensorial
description of the near-field HI, regardless of the specific form
chosen for the steric repulsion (Fig. 4 C and F). The numer-
ical results above show that the resistance tensor captures the
essence of the near-field HI and cannot be replaced by any effec-
tive steric interactions. A previous model has also studied the
entrapment numerically (35), by simplifying the bacterial stress
distribution as a force dipole and evaluating its near-field HI
with the passive sphere through the method of images. How-
ever, as the surface distance d becomes very small during the
entrapment, the dipole approximation becomes an oversimpli-
fication insufficient to describe the stress distributions, since
higher-order terms in the multipole expansion are also very
important (36). Therefore, unlike our model that predicts a sta-
ble fixed point, calculations based on this previous model show
only one saddle point in the phase plane (the red cross in Fig.
4E). And the seeming entrapment observed in this previous work
is merely the unphysical consequence of an artificially imposed
condition of a minimum surface distance (the black circle
in Fig. 4E).

Beyond being physically effective, our model of the near-
field HI through the resistance tensor also leads to efficient
simulation of large bacterial suspensions. To construct such a
resistance tensor, we follow the classic Stokesian dynamics sim-
ulation (29), which reduces the many-body HI problem to a
two-body HI problem in a two-step procedure by exploiting the
linearity of the Stokes equation. Specifically, in the first step,
we model the HI at far-field limit through the grand mobility
tensor M0, which can be analytically constructed in a pairwise
addictive fashion by assuming simply a point force at the cen-
ter of each bead. In the second step, the resistance tensor is
obtained, as analytical lubrication terms for near-touching pairs,
ξ2b , are included in a pairwise additive fashion: ξ=M−1

0 + ξ2b .
In our simulation, we implement the solution of the linear equa-
tion ξ · v=F by first transforming it into an equivalent form
of (I +M0 · ξ2b) · v=M0 ·F and then solving it with General
Minimal Residual Method (GMRES). As illustrated in Fig. 5A,
our model enables efficient simulations of active suspensions
with N swimmers by evaluating HI in 10 to 100 s, where N =
1,000 for a laptop (Intel i5, 8-GB memory), N = 3,000 for a desk-
top (Intel i9-9820X, 64-GB memory), and N = 10,000 for a single
computational node (two Intel Xeon E5-2680 v3 chips, 256-GB
memory). These numbers are sufficiently large to investigate the
essential influence of near-field HI on many emergent behav-
iors displayed in active fluids, as illustrated by previous studies
with models that are unable to capture the near-field HI [e.g.,
N = 2,500 in studying hydrodynamic instability (5), N = 1,000
in studying the effect of confinement (25), and N =200 in
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Fig. 4. Bacterial entrapment. (A) Setup for the scattering problem, where ψ is positive for counterclockwise rotation. Contour map of ψ is predicted by
(B) our model and (C) the existing two-bead model. The trajectory of a bacterium (red line) in the phase plane defined by d and θ as predicted by (D) our
model, (E) an earlier study using image of a force dipole, and (F) the existing two-bead model. A closer look at the trajectory in D shows a stable fixed point
(red square). In E, there only exists a saddle point (red cross), and the entrapment is artificially obtained with a sticky steric interaction at d = 0 (black circle).

studying the emergence of organizations (1)]. A snapshot of the
flow field out of our simulation with N = 1,000 is illustrated
(Fig. 5B), which reproduces the vortex structures that have been
observed in earlier simulation works (25). It is worthwhile to note
that, without a simple model, an accurate description the near-
field HI for even a small system of N =10 through the method of
Stokeslets requires days of computation. Direct numerical sim-
ulations [e.g., the multiparticle collision dynamics (37, 38), the
lattice Boltzmann method (39), or the smooth profile method
(40)] alternatively evaluate the HI by explicit calculation of sol-
vent motion. However, to resolve the near-field HI requires
advanced techniques such as grid refinement, which leads to
expensive computations, as the simulation time step scales lin-
early with the smallest grid size. Even by employing a steric repul-
sion that avoids proper treatment of HI in the near-field limit,
these direct numerical simulations are typically used for small
system of N ≈ 100.

In current study, we have kept our model at the minimal level
to highlight the essence of HI in the near-field limit. In princi-
ple, the description of the near-field HI by the resistance tensor
is so generic that we expect the model to be broadly applica-

ble. With moderate modifications while retaining its simplicity,
our model can be generalized to bacteria with nonspherical cell
bodies, other species of microswimmers, and different boundary
conditions (SI Appendix, Figs. S3–S5). Furthermore, results of
our simulations of bacterial suspensions demonstrated that our
model is essential for understanding the nonequilibrium physics
in active fluids: Under the same conditions, our model of HI
using the resistance tensor leads to qualitatively different clus-
tering behavior as compared to that obtained from the existing
two-bead model plus a steric repulsion (SI Appendix, Fig. S6).

In conclusion, we have proposed a rigorous model for the
near-field HI that is both physically effective and computa-
tionally efficient. Compared to the method of Stokeslets that
is considered the gold standard in solving Stokes flows, our
model shows equal accuracy in both the near field and the
far field but drastically reduced the computational burden so
that the HI of thousands of bacteria can now be evaluated by
a PC in seconds. In reality, other types of interactions (e.g.,
steric repulsion and electrostatic interaction) exist in active flu-
ids and may be important. Our current work points out that
HI can be fully described by the resistance tensor of dissipative
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Fig. 5. Efficient simulation of bacterial suspensions. (A) Simulation time per step as a function of the number of bacteria. (B) Snapshot of the velocity field.

nature so that it is fundamentally different from interactions
of conservative nature: One cannot use interactions of conser-
vative nature in place of the HI, and vice versa. This funda-
mental difference justifies previous studies, where simulations
of small nonequilibrium suspensions (N ≈ 100) demonstrated
that the use of a steric repulsion in place of a resistance
tensor leads to qualitatively erroneous predictions regarding
both system dynamical behaviors and structures (12, 13). Previ-
ous simulations of bacterial suspensions with similar tactics of
using a steric repulsion to avoid proper treatment of the HI

in the near-field limit are all liable to similar computational
artifacts.

Data Availability. All study data are included in the article and SI
Appendix.
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