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Pipe-like confinements are ubiquitously encountered by microswimmers. Here we systematically study the ratio
of the speeds of a force- and torque-free microswimmer swimming in the center of a cylindrical pipe to its speed in an
unbounded fluid (speed ratio). Inspired by E. coli, the model swimmer consists of a cylindrical head and a double-helical tail
connected to the head by a rotating virtual motor. The numerical simulation shows that depending on swimmer geometry,
confinements can enhance or hinder the swimming speed, which is verified by Reynolds number matched experiments.
We further developed a reduced model. The model shows that the swimmer with a moderately long, slender head and a
moderately long tail experiences the greatest speed enhancement, whereas the theoretical speed ratio has no upper limit.
The properties of the virtual motor also affect the speed ratio, namely, the constant-frequency motor generates a greater
speed ratio compared to the constant-torque motor.
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1. Introduction
Microswimmers such as bacteria commonly swim in con-

fined spaces such as soils and tissues. The effect of confine-
ment on the mobility behavior of microswimmers has impli-
cations in biofilm formation,[1] micro manipulation,[2,3] and
biomedical processes,[2,4] hence has attracted continuing re-
search efforts.

Previous studies showed that boundaries and confinement
can affect the swimming speed of microswimmers. For exam-
ple, the forward speed of the sperm decreases monotonically
in the pipes until the pipe diameter is small enough to forbid
mobility of the sperm.[5] The speed of bimetallic microswim-
mers can increase up to 5 times due to the electrostatic and
electrohydrodynamic boundary effects.[6] Several theoretical
and numerical studies have shown enhancement of the swim-
ming speed with confinements in various idealized systems,
including dipolar microswimmer,[7] infinite waving sheet,[8]

and spherical squirmers.[9,10]

As many microswimmers use helical flagella for propul-
sion (e.g., E. coli), the thrust and motion of simple helical
structures in confinements have been studied extensively. In-
cluding a passive head, Caldag et al.[11] experimentally stud-
ied the motion of a magnetically driven helical microswimmer
in a pipe. With a fixed geometry of the swimmer, they found
that the swimming speed varied little in two cylinders with
different radii. Felderhof[12] presented an analytical solution
for a slender, infinite helix swimmer in the cylindrical pipe us-
ing the perturbation method and reported an enhancement of
speed due to the confinement. Liu et al.[13] verified the speed
enhancement phenomenon numerically using a boundary ele-

ment method. They calculated the swimming efficiency of the
helical flagella, and found that the optimal geometry is similar
to that of E. coli and does not depend on confinement.

While much is known for the thrust generation and the
swimming of simple helical structures driving externally, the
influence of the confinement to the speed of self-propelled mi-
croswimmers still needs to be clarified. An experimental study
by Vizsnyiczai et al.[14] demonstrated that the forward speed
of E. coli in a square tunnel with a width of about 2.3 µm
reaches a maximal speed 1.1 times the free speed. They at-
tributed the speedup to the decrease of the wobbling ampli-
tude due to the confinement. Acemoglu and Yesilyurt studied
a self-propelled microswimmer in a finite pipe numerically.[15]

The swimmer consists of a spheroid head and a single he-
lical tail. They varied the geometric parameters of the pipe
and swimmer and observed a maximum speed enhancement
of ∼ 30% depending on the ratio of pipe to head radius. How-
ever, the assumption that the spin of the tail is a constant rela-
tive to the lab frame rather than to the body of the swimmer is
unphysical.

Although the speed enhancement of helical swimmers in
confinements is repeatedly observed in simulations and exper-
iments, it is still unclear if the enhancement is possible on a
self-propelled swimmer purely due to hydrodynamic effects.
The dependence of the enhancement in the swimming speed
on the geometric parameters of the helical swimmer and the
confinement is also not well understood. Here, we develop a
numerical model based on a simplified double-helix swimmer
in an infinite pipe to study the variation of the speed ratio, and
verified the phenomenon experimentally. We further develop
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a reduced model to extend the ranges of parameters to discuss
the optimal geometry that results in maximum speed enhance-
ment, and explore the upper limit of the speed enhancement.

2. Models and validations
2.1. Model system

We consider an E. coli-like helical swimmer inside an in-
finitely long cylinder filled with Newtonian fluid. As shown
in Fig. 1(a), the microswimmer consists of a rigid cylindrical
head with round ends and a rigid double-helical tail. These two
parts are connected by a virtual motor that the hydrodynami-
cal effect is negligible. The microswimmer is placed along the
pipe center-line. Geometrical parameters of the microswim-
mer are shown in Fig. 1(a), including the radius of the pipe R,
the radius of the head rh, the radius of the tail rt, the lengths
of the head lh and the tail lt = nλ , the pitch of the helical tail
λ , the number of periods n, and the length of the virtual motor
δht. We normalize the length of the model using the radius of
tail rt.

(a)

(b)
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Fig. 1. (a) The diagram of the microswimmer in an infinitely long pipe.
The microswimmer is placed along the axis of the pipe. The head and
the tail rotate in opposite directions. Geometrical and kinetic parame-
ters are illustrated in the figure. (b) Hydrodynamically reduced model
of the microswimmer. The forces and torques on the head and tail from
the fluid are (Fh, Th ) and (Ft, Tt ).

The virtual motor generates a spin Ωsw that rotates the
head in the counterclockwise direction with an angular speed
Ωh, and rotates the tail in the opposite direction with an angu-
lar speed Ωt = Ωh +Ωsw. The rotation of the helix generates
a thrust and results in a forward velocity U(R) in the pipe with
a radius R. Then U∞ = U(∞) is the velocity in the free space
and the speed ratio is defined as

α =
U(R)
U(∞)

. (1)

Due to the symmetry of the body geometry of the swimmer,
the translational and rotational velocities of the swimmer have
only non-zero components along the axis.

We assume that the fluid moves at the creeping flow
regime so that the governing equations of the velocity 𝑢 are

∇ ·𝑢= 0, (2)

µ∇
2𝑢= ∇p, (3)

where p is the pressure, and µ is the fluid viscosity. We apply
the no-slip boundary conditions on the surface of the pipe

𝑢(𝑥b) = 0, (4)

and on the surface of the microswimmer

𝑢(𝑥h) = (0,0,U)+(0,0,Ωh)×𝑟h, (5)

𝑢(𝑥t) = (0,0,U)+(0,0,Ωt)×𝑟t, (6)

where 𝑟h and 𝑟t indicate the relative position of the surface of
the microswimmer with respect to the center of the head, re-
spectively. Since inertia is negligible for microswimmers, the
self-propelling microswimmer satisfies the force- and torque-
free conditions.

The output characteristics of the motor also influence the
speed of the swimmer under different confinements, hence in-
fluence the speed ratio. Previous studies on several kinds of
bacteria have shown that the motors in bacteria have similar
output characteristics: at low spin speed the torque is nearly
constant and at high spin speed the torque decreases.[16,17]

Therefore, we mainly focus on the constant torque case, and
without losing generality, we assume unit motor torque Tsw =

1. We will also consider the constant-frequency Ωsw = 1 and
the constant power Psw = ΩswTsw = 1 cases. Taking advan-
tage of the linearity of the system, we only need to scale the
speed from one of the cases to get the swimming speeds for
the others.

2.2. Numerical solution

We first solve the motion of the swimmer and fluid flow
explicitly using the method of Stokeslets.[18,19] We perform
full three-dimensional simulations in this study and compute
the swimming velocities in all 6 degrees of freedom. We find
the lateral component of the swimming speed is less than 0.1%
of the forward speed in all cases we tested, consistent with our
previous analysis. The linearity of the Stokes equations allows
us to decompose the flow fields in terms of fundamental singu-
lar solutions of point forces, namely, Stokeslets. By solving a
matrix equation connecting the singularity forces and bound-
ary velocities, the flow field and boundary forces can be ob-
tained. Since the relations between the forces and velocities,
and torques and angular velocities of the swimmer are also lin-
ear, the force- and torque-free equations for the head and tail
can be added to the matrix equations for the fluid.[19–21] Then
the swimming speed and the rotation of the head and tail can
be obtained at the same time as the flow.

The method of Stokeslets has the ability to capture differ-
ent boundary conditions by applying appropriate Stokeslets.
The most commonly used one is the Stokeslets in three-
dimensional infinite space

𝑆(𝑥,𝑥f) =
1

8πµ

(
𝐼

r
+

(𝑥−𝑥f)(𝑥−𝑥f)

r3

)
, (7)
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which connects the velocity at a point in the space 𝑥 and a
point force at 𝑥f. For the Stokeslets in a pipe with zero velocity
on the pipe surface, Liron and Shahar have developed a series
expression.[22] However, the series expression has a conver-
gence problem when applied to a continuous surface such as
the head of the swimmer. To describe the boundary velocity
accurately on a continuous surface, the distance of the point
force should be small. But the convergence rate of the series
is exponentially slow near the point force, especially along the
direction of the cylinder axis. We solve this problem by using
the series expression for points with large distances from the
point force and use free-space Stokeslets (Eq. (7)) with correc-
tions from the confinement for nearby points. For the details
of reconstructing the Stokeslets in pipe and the validation of
the method, see Appendix A.

2.3. Physical model

To verify that a self-propelled swimmer can change speed
because of only hydrodynamical effects and validate our nu-
merical models, we developed a physical model — a robot
(Fig. 2). The shells of the head and the tail are 3D printed us-
ing Resin V4 Tough 3D material (Huaxia Plastic Co.). The
head radius is rh = 11.2 mm, and the head length is lh =

123.40 mm. Different from the simulation, a thin rod with
radius ρht = 2 mm and length δht = 13 mm is required to con-
nect the motor and the tail. The flagella radius of the tail is
ρt = 2.5 mm.

Head

Marker

Tail

Magnet

Battery

Remote controller

Motor

(b)(a)

Fig. 2. The outside (a) and inside (b) views of the flagellated robot.

We reproduced the phenomena of speedup and slow down
by changing the tail shape. Inside the robot head, a mo-
tor (model JGA-N20-298, ASLONG MOTOR Co., 40 RPM,
11 kg·mm), a remote-controlled infrared switch, and a lithium-
ion battery (7.4 V, 350 mAH, ZON.CELL Co.) are serially
connected (see Fig. 2(b)). A white line and a white dot were
drawn on the head of the robot, and a white dot was also drawn
on the tail of the robot for video tracking. We adjust the weight
of the swimmers by putting in metal chips, such that the robot
has neutral buoyancy in the fluid. The neural buoyancy is con-
firmed by examining the movement of the robot while power
off. The speed of the robot in the fluid with the motor off is
less than 1% of the speed when the motor is on.

To make the Reynolds number comparable to biological
systems, we used silicone oil with a kinematic viscosity of
105 cSt. As the robot tail can spin at about 40 rad/min, the
corresponding Reynolds number is less than 10−2. We further
filled the gaps with silicone grease to prevent the liquid getting
into the robot during the experiments. The total depth of the
fluid is 500 mm, about four times the robot’s length. We ap-
proximate the infinite volume of fluid by using a cylinder with
a radius of 147 mm, more than ten times of the robot’s head
radius. To minimize the influence of the surface boundary of
the fluid, the data was collected when the robot is 150 mm
below the surface of the fluid and 150 mm above the bottom
of the container. A magnet was used to adjust the orientation
of the robot and align its axis with the axis of the cylindrical
container before the experiment started. The robot can swim
70–100 mm per minute. The motion of the robot was recorded
by a camera at a time interval of 300 ms. We calibrated the
image with a scale in the fluid for small optical distortions.
The trajectories of the robots were obtained by tracking the
markers on the robots. Each case was repeated 3 times.

2.4. Comparison of speeds from experiments and numeri-
cal simulations

We compared the speed ratio of two typical kinds of mi-
croswimmers, one with a big tail and another one with a small
tail. The geometrical parameters of the microswimmers are
listed in Table 1.

Table 1. Geometric parameters of microswimmers in the simulation
and the experiment.

Experiment Simulation
big tail small tail big tail small tail

rh 11.20 mm 11.20 mm 0.43 1.24
lh 123.40 mm 123.40 mm 4.76 13.71
n 0.5 0.5 0.5 0.5
λ 62.00 mm 85.00 mm 2.39 9.44
rt 25.90 mm 9.00 mm 1 1
ρt 2.5 mm 2.5 mm 0.097 0.27
δht 13 mm 13 mm 0.50 1.44
ρht 2 mm 2 mm 0.077 0.22

We found that the speed ratio depends on the geometry of
the swimmer, especially the ratio of the head size to the tail
size. For the swimmer with a small tail, the speed decreases
monotonously with the stronger confinement in Fig. 3(a). In
contrast, the speed of the swimmer with a big tail increases at
first and then decreases as the confinement becomes stronger,
as shown in Fig. 3(b).

Although there is a system error between experimental
and numerical results, the phenomenon is verified, and the
speed ratio is close to the simulation results. We attribute
the discrepancy to the minor differences in the configurations,
such as the connecting rod and surface effects.
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The numerical results showed that, for the big tail case,
the speed ratio reaches the peak at rt/R ≈ 1/0.7, consistent
with the previous study on a single helix.[13] Since the increase
of propulsion is the greatest when rt/R≈ 1/0.7 for the tail, we
use this value for the rest of the paper.
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Fig. 3. The speed ratio α of microswimmer as a function of the ratio between
the radius of the tail and the radius of the pipe, defined as rt/R. (a) The mi-
croswimmer with a small tail slows down in the pipe. (b) The microswimmer
with a big tail speedup in the pipe. The blue dots show the simulation results,
and the red dots with the error bar show the experimental results. The labels
indicate the pipe radii in the experiments. All the speeds are normalized such
that the spin of the motor is a constant 1.

More numerical test cases implied that the length of the
tail plays an important role in determining the speed of the
swimmer, but the long tails are computationally intensive for
numerical simulation. Therefore, to better understand this
speedup phenomenon, we developed a reduced model.

2.5. Reduced model

Take advantage of the symmetry, the head and tail can
only translate and rotate along the axis of the pipe. Due to the
constrain by the connecting rod, Uhead = Utail = U . We fur-
ther neglect the hydrodynamical coupling between the head
and tail and then the motions of the head and tail are re-
lated to the forces and torques on them by the following linear
equations:[23,24] [

Fh
Th

]
=

[
Ah 0
0 Ch

][
U
Ωh

]
, (8)[

Ft
Tt

]
=

[
At −Bt
−Bt Ct

][
U
Ωt

]
, (9)

where subscriptions “h” and “t” represent the head and tail,
respectively.

The model is completed by including the force- and
torque-free conditions, as well as constant motor torque as-
sumption

Ft =−Fh, (10)

Tt =−Th, (11)

Tsw = Tt ≡ 1. (12)

Solving Eqs. (8)–(12) simultaneously, the forward velocity of
the microswimmer in the pipe U reads as

U =
Bt

(Ah +At)Ct−B2
t
. (13)

The rotation–translation coupling term of the tail Bt is an or-
der smaller than other resistance coefficients.[25,26] Ignoring
the higher-order terms O(B2

t ), we have

U =
Fth

Asw
, (14)

where Fth = Bt/Ct, and Asw = Ah +At. One can observe that
the forward velocity of the microswimmer is a result of the
competition between the thrust Fth of the tail and the total
drags Asw of the microswimmer. A similar relation for swim-
ming in free space and the speed ratio can be computed as

α =
U∞

U
=

Fth

F∞
th

A∞
sw

Asw
, (15)

where the superscript ∞ indicates the quantities in the free
space.

2.6. Obtain the coefficients of the resistance matrix

A crucial step to calculate the speed ratio α from Eq. (15)
is determining the resistance coefficients. These coefficients
can be obtained from Eqs. (8) and (9) by using the Stokeslets
method solving two cases: pure translation {U = 1,Ωi = 0},
and pure rotation {U = 0,Ωi = 1} for the head and the tail,
respectively.

2.6.1. Resistance coefficients of head

The coefficients for the head in the confinement increase
linearly with the length when the head is sufficiently long such
that the interaction between the head and nearby pipe surface
dominates (Fig. 4). When the radius of the head is small and
short, the confinement effect is weak and a sub-linear (loga-
rithmic) relation is observed. To highlight such transition, we
use a relatively small radius rh/R = 0.1 in Fig. 4. As the pur-
pose of developing the reduced model is for long head and
tail cases, we approximate the forces on the head with linear
functions

Ah = ahlh, (16)

Ch = chlh. (17)

Quantitatively, our simulation results agree well with the
analytical solutions of an infinite cylinder moving inside a
pipe:[27]

ah =
−2π[1−4

( rh
R

)2−4
( rh

R

)4 ln
( rh

R

)
+3
( rh

R

)4
](

1−
( rh

R

)4
)

ln
( rh

R

)
+
(

1−
( rh

R

)2
)2 , (18)

ch =
4πr2

h
1− ( rh

R )
2 . (19)

Then the coefficients can be used to extrapolate the re-
sistance of long heads. We note that the effect of the pipe
confinement to the rotational coefficient is much weaker than
the effect on the translation coefficient (Fig. 4(b)).
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Fig. 4. Translational and rotational resistance coefficients of a head in
free space (A∞

h and C∞
h ), and inside the pipe with radius rh/R = 0.1 (Ah

and Ch). Here rh = 1. Solid lines represent the analytical solutions given
by Eqs. (16) and (17) (in a pipe), and Eqs. (23) and (21) (in bulk fluid).

For the head in free space, we observed a linear relation-
ship for the rotational coefficient (Fig. 4(b)). Chwang and
Wu[28] presented the analytical expression of the torque per
unit length of an infinitely long cylinder

C∞
h = c∞

h lh, (20)

where c∞
h = 4πr2

h.
Thus, the rotational resistance coefficient C∞

h keeps the
linear relationship as functions of head length lh both inside
and outside the pipe

c∞
h = lim

R→∞
ch = 4πr2

h. (21)

In contrast, we observed a sub-linear relationship of the
resistance coefficients in the forward direction (Fig. 4(a)). The

head drags A∞
h in the bulk fluid can not be obtained by taking

a limit of Eq. (18). For very large pipe radius R� rh, Eq. (18)
gives

lim
R�rh

Ah = 2π
lh

ln(R/rh)−1
+O

( rh

R

)2
. (22)

Alternatively, we can obtain the analytical expression for
the head drag based on Ref. [29], in which the drag of a slen-
der body of revolution is provided. Using a constant radius
along axis and correcting some typos, the drag on the head is

A∞
h = a∞

h
lh

ln(lh/rh)+βh
, (23)

where a∞
h = 2π and βh = ln2−3/2.

While Eqs. (22) and (23) look different, they are actu-
ally consistent. There is a competition between the interaction
between the pipe and the interaction between different parts
of the rod. When the pipe boundary is closer to the head,
i.e., R� lh, the confinement effect dominates and the drag
increases linearly with length; when the pipe boundary is far
from the head, i.e., R� lh, the interaction between different
parts of the head dominates and the drag increases sub-linearly
with length. The analysis highlights the different trends of
head drag with and without confinement, and in the next sec-
tion, we will show the impact of this difference on the speed
ratio.

2.6.2. Resistance coefficients of the tail

From the numerical simulation, we found that the resis-
tance coefficients for short tail increase rapidly, and then the
increase becomes slower (Fig. 5). By taking the tail pitch
λ = 2.5 as an example, we observed a local maximum of B∞

t

near n1 ≈ 0.5 (lt ≈ 1.25). Such a maximum is the result of
the shadowing of the front part of a helical tail to the poste-
rior part, similar to a previous study.[30] The previous study
showed that the speed of the microswimmer with a single he-
lical tail peaks around one period n1 ≈ 1. Since we employed
a double-helical tail, the overlap of the projection of the tail
perpendicular to the forward direction occurs when n1 = 0.5
and causes the local maximum.

0 20 40 60 80
lt lt lt

0

∞ ∞

50

100

150

A
t

0 20 40 60 80
0

2

4

6

8

B
t

C
t

Sim
AsySBT
Fit

0 20 40 60 80
0

200

400

600

800

0 1 2
0.5

1.0

1.5
(b)(a) (c)

∞

Sim
AsySBT
Fit

Sim
AsySBT
Fit

Fig. 5. A comparison of the resistance coefficients from the simulation, asymptotic SBT and fitting methods. The translational (a), rotational
(b) and coupling (c) resistance coefficients of tail in free space as functions of tail length lt. The inset of panel (b) reports a detailed view of the
regions enclosed by the grey dotted box. Tail pitch λ = 2.5, tail radius rt = 1, and flagella radius ρt = 0.1. The gray bars in the background
indicate the range where the fittings of ci j were done.
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To model long tails that require too much computational
power and obtain a better understanding of the resistance, we
computed the coefficients for infinitely long tails and used
these coefficients to approximate the coefficients for long but
finite tails. For an infinitely long tail moving along or rotate
about its axis, the force is uniform and symmetric about the
helix axis. We use the uniform force density to connect the
motion of the tail and the total force on the tail. Without
loss of generality, we consider a point on one of the helix at
𝑥0 = (0,rt,0) (see Fig. 6). At this point, the pure translation
of the double-helix leads to a local velocity 𝑢t = (0,0,1) and
the pure rotation with an angular speed of 1 corresponds to a
local velocity 𝑢t = (0,rt,0).

X

Y

Z

ft

ft

x1

x1

x0

x0

r

r′

θ

′

′

′

Fig. 6. Diagram of the infinite double helix for tail coefficient compu-
tation. The angle in XY plane θ ∈ (−nπ,+nπ) is used to locate a pair
of points (𝑥1(θ) and 𝑥′1(θ)) on the double helix. Their displacements
to 𝑥0 are 𝑟(θ) and 𝑟′(θ), respectively.

The force density is a constant in cylindrical coordinates:
𝑓t = ( fr, fθ , fz). Then the total force over one wavelength of
the double-helix is

𝐹 = (0,0,2nS fz), (24)

where S =
√

4π2r2
t +λ 2 is the arc length of the helix per

wavelength.
Similarly, we can calculate the total torque on the tail as

a function of the force density

𝑇 = (0,0,2nS fθ rt). (25)

For a constant force distribution, the velocity at the posi-
tion 𝑥0 can be computed using Lighthill’s slender body theory
(SBT)[31]

𝑢t(𝑥0) =𝑀(lt)𝑓t, (26)

𝑀 =

crr 0 0
0 cθθ cθz
0 cθz czz

+
0 0 0

0 0 0

0 0
S ln(lt/rt)

λπ

 . (27)

The resistance matrix 𝑀 of the asymptotic theory is a combi-
nation of two parts. The first part comes from the contribution
of the local forces, and ci j are the coefficients. Due to sym-
metry, the cross-terms related to fr are zero. Further, since crr

is not related to translation along the axis of rotation about the
axis, it is not used hereafter. The second part is the long-range

contribution of the forces. Since the displacement is domi-
nantly along the axis and the leading term of the coefficient
decays as 1/r, only the component along the axis remains, and
this term increases logarithmically with the tail length similar
to a cylinder. See Appendix A for details of the derivation of
the asymptotic analysis.

From Eq. (9) and (24)–(27), we obtained the coefficients
for a long tail in free space

A∞
t = a∞

t
lt

ln(lt/rt)+βt
, (28)

B∞
t = b∞

t
lt

ln(lt/rt)+βt
, (29)

C∞
t = c∞

t lt, (30)

a∞
t = 2π, (31)

b∞
t = 2πrt1

cθz

cθθ

, (32)

c∞
t =

2r2
t1S

cθθ

czzλπ + ln(ltπ/λ )S(
czz−

c2
θz

cθθ

)
λπ + ln(ltπ/λ )S

≈
2r2

t1S
cθθ

, (33)

βt =

(
czz−

c2
θz

cθθ

)
λπ

S
+ lnπ− lnλ . (34)

While the coefficients in 𝑀 can be computed using the
asymptotic SBT and an overall agreement between the theory
and simulation is observed, there are quantitative discrepan-
cies (Fig. 5). We attribute the discrepancies to the end effects
and approximations in SBT such as the slenderness of the he-
lix. Therefore, instead of using the values from asymptotic
SBT, we fit the simulation data using the functional forms of
Eqs. (28)–(34). This fitting allows us to approximate the resis-
tance coefficients for longer tails.
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lt









A
t
↪ 
B
t
↪ 
C
t

At

Bt

Ct

Fig. 7. The resistance coefficients of the tail in a pipe as functions of
tail length. R = 1/0.7, λ = 2.5, and ρt = 0.1. The solid lines show the
associated linear fitting.

Due to the shielding of the long-range interaction in the
pipe, the resistance coefficients for the tail increase linearly
with the tail length, i.e.,

At = at

( rt

R

)
lt, (35)

Bt = bt

( rt

R

)
lt, (36)

Ct = ct

( rt

R

)
lt. (37)
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We fit the simulation results to obtain the coefficients (see
Fig. 7) and use those values for long tails. Similarly, the accu-
racy of the linear relationship depends on the length of the tail
relative to the radius of the pipe. Since we consider tails that
are close to the boundary (rt/R = 0.7), the linear relationship
is valid for even small lengths.

2.6.3. Error due to the hydrodynamic decoupling

We further tested the reduced model and evaluated the
error due to the decoupling using the full numerical simula-
tions. We chose two microswimmers. One has a long head,
and the other has a short head. We varied the distance be-

tween the head and tail and compared the results from the re-
duced model with those from the direct simulation (Fig. 8). We
found that the velocities in general decrease with an increase
in the gap length. We attribute the decrease to the shielding
effect,[32] which reduces the drag of the microswimmer with a
small head–tail gap. For all the cases, the discrepancy between
the reduced model and direct simulation is small (< 10%), and
the velocities converge for a head–tail distance δht greater than
about 20. Since the speed ratio measures the relative value
between the velocities, the variation in α is amplified, and
more significant changes ≈ 20% are observed as δht varies.
Nonetheless, it converges for δht > 20.
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Fig. 8. Error due to the decoupling of the head and tail for a long head lh = 1.8 swimmer (top row) and a short head lh = 0.6 swimmer (bottom
row). The velocities in free space U∞ (a), (d) and in the pipe U(1/0.7) (b), (e) of the microswimmers, as well as their ratio α (c), (f) as functions
of the distance between head and tail δht. The solid lines correspond to the values from the reduced model, the symboles correspond to direct
simulations, and the lines are drawn to guide the eye. rh = 0.3 λ = 2.5, rt = 1, ρt = 0.1.

In the rest of the study, we combined the numerical
method and reduced model to calculate the swimming speeds
and speed ratios. Specifically, for short head lh ≤ 80 and short
tail lt ≤ 25, we employed the numerical method, and for large
head lh > 80 and tail lt > 25, we employed the reduced model.

3. Model prediction

To better understand the dependence of the speed ratio on
the geometry, we developed analytical approximations of the
speed ratio α at the long head and tail limit. First, we summa-
rize the approximations of the resistance coefficients for very
long head/tail in Table 2. The resistance coefficients increase
linearly in the pipe and logarithmically in free space except for
the rotational resistance, which increases linearly with length
both inside the pipe and in the free space. Substitute the re-
sistance coefficients in Eq. (15) with those approximations in

Table 2, the speed ratio of the microswimmer becomes

α =
bt

b∞
t

c∞
t

ct

a∞
h

lh/ ln(lh/rh)
lt/ ln(lt/rt)

+a∞
t

ahlh/lt +at
. (38)

Equation (38) indicates that the lengths of the head and the tail
appear in pairs and have opposite effects on the ratio.

Table 2. The approximations of the resistance coefficients of the mi-
croswimmer.

Free space In pipe

A∞
h = a∞

h
lh

ln(lh/rh)+βh
≈ a∞

h
lh

ln(lh/rh)
Ah = ah

( rh

R

)
lh

A∞
t = a∞

t
lt

ln(lt/rt)+βt
≈ a∞

t
lt

ln(lt/rt)
At = at

( rt

R

)
lt

B∞
t = b∞

t
lt

ln(lt/rt)+βt
≈ b∞

t
lt

ln(lt/rt)
Bt = bt

( rt

R

)
lt

C∞
t = c∞

t lt Ct = ct

( rt

R

)
lt
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3.1. The optimal geometry for the speed ratio

We first consider the microswimmers with given body
slenderness (length/radius). Since many microswimmers have
slenderness in the range of 1–100,[33] we used head slender-
ness of 10 and varied the length of the tail and head.

We observed that moderate head and tail lengths lead to
the greatest speedup (Fig. 9). Due to the peak of the thrust at
n1 ≈ 0.5 (corresponding to lt ≈ 1.25), the maximum of speed
ratio (≈ 1.3) also occurs near such value for the lh/rh = 10
case. For a more slender head lh/rh = 100000 (Fig. 9(b)),
the maximal speed ratio is much larger (≈ 7) and the peak
is shifted to longer tail length.
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Fig. 9. Speed ratio α as a function of the tail length and the head length
normalized to the tail radius. Head slenderness, lh/rh = 10 in (a) and
lh/rh = 100000 in (b), is kept a constant in respective subfigures. Tail
pitch λ = 2.5 and pipe radius R = 1/0.7.

We now show that the speedup phenomenon favors a
moderate length ratio for both head lh and tail lt by considering
two extreme cases inside the pipe. At the long head limit, i.e.,
lt � lh, the head drag Ah is much larger than the tail drag At

both inside and outside the pipe, even the head radius might be
much smaller than the tail. Then the expression of the speed
ratio can be simplified as

lim
lt�lh

α ≈ btc∞
t

b∞
t ct

a∞
h

ah

ln(lt/rt)

ln(lh/rh)
. (39)

As shown in Eq. (39), the speed ratio increases with increas-
ing tail length. Since the related term ln(lt/rt) comes from the
propulsion coefficient B, the physical explanation of this in-
crease is that the increase of propulsion is faster (linear) in the
pipe than that in the free space, while the increase of the tail
drag is negligible. Correspondingly, the head drag exhibits the
opposite behavior.

On the other hand, at the long tail limit lt� lh, where the
drag contributions from the head (i.e., the terms start with a∞

h
and ah in Eq. (38)) are negligible. The speed ratio becomes

α =
bt

b∞
t

c∞
t

ct

a∞
t

at
. (40)

Physically, this formula corresponds to the speedup of only
tails in the pipe and is in agreement with Ref. [13]. In this for-
mula, the head drag is totally neglected. To show the influence
of the head geometry, we further consider the leading order of
the head drag by expanding Eq. (38). Note that since a∞

h and
ah are both in the order of 1, a∞

h
lh/ ln(lh/rh)
lt/ ln(lt/rt)

is much greater than
ahlh/lt when lt� lt. Then, we have

lim
lt�lh

α ≈ btc∞
t

b∞
t ct

(
a∞

t

at
+

a∞
h lh/ ln(lh/rh)

atlt/ ln(lt/rt)

)
. (41)

Equation (41) shows that the speed ratio decreases as the tail
length increases for very long tails, which agrees with the re-
sults from the reduced model (Fig. 9). As a result, the greatest
speedup occurs at moderate lengths for both the head and the
tail.

For lh � 1 and lt � 1, the variations of the logarithmic
terms are small and the speed ratio is approximately a con-
stant for the same value of lh/lt. Therefore, the contour line
in this regime is approximately straight with a slope of 1 (see
the right lower corner of Fig. 9(b)). The influence of the head
radius can also be seen from Eq. (41). When the tail is very
long, and the head radius is small, the increase of the head
radius leads to a perturbation that increases the speed ratio.
When the head radius is large enough, the gap between the
head and the pipe is tinny. The lubrication theory predicts that
the drag force diverges.[27] Therefore, the speed ratio is maxi-
mized with a small but finite head radius.

3.2. Upper limit of the speed ratio

Obviously, the lower bound of the speed ratio is zero. For
example, a microswimmer with a thick head can move in the
free space but will get stuck in the pipe. In this subsection, we
vary the slenderness of the head and discuss the maximal value
of the speed ratio. We will show that the speed ratio has no up-
per bound by constructing certain geometries of the swimmer
and associated analytical expression of the speed ratio. The
key is to make the head drag much larger than the tail drag in
the bulk fluid and keep the head drag comparable with the tail
drag in the pipe.

The geometric relations we found are rh = l−1
h and lt =

l1−η

h , where η = ln(ln lh)/ ln lh. With these geometric relations
and using the approximation Eq. (22) for a very thin head, we
derived the velocities and the speed ratio as follow:

U∞|lh�R ≈ 2
b∞

t

a∞
h c∞

t
l−1
h , (42)

U |lh�R ≈
bt

(a∞
h +at)ct

lη−1
h , (43)
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α|lh�R ≈
1
2

bt

b∞
t

c∞
t

ct

a∞
h

a∞
h +at

lη

h . (44)

Note that, even limlh→∞ η = 0, since limlh→∞ ln lη

h =

limlh→∞ ln(ln lh) = ∞, we still have limlh→∞ lη

h = ∞. There-
fore, the speed ratio of the microswimmer has no upper bound.
Note that the optimal speed ratio for given head length can be
higher than this specified shape.

The growth rate of the speed ratio, however, is very slow,
α ∝ ln lh (note that lnα ∝ η ln lh = ln(ln lh)), as shown in
Fig. 10. Moreover, the forward velocity decreases as U ∼
l−1
h ∝ exp(−α) at the very long head limit. Thus, even the

speed ratio is huge, the microswimmer with such kind of ge-
ometry almost can not move forward. Therefore, the large
speed ratio has little use to practical artificial systems and bio-
logical systems, as the head aspect ratios of most bacteria are
on the order of magnitude 100 to 102.[33]
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Fig. 10. (a) The speed ratio as a function of head length lh when the head ra-
dius varies as rh = l−1

h and tail length varies as lt = l1−η

h . (b) The velocities
inside the pipe and in free space as functions of the speed ratio.

3.3. Influence of the motor output characteristics

The motor output characteristics (speed–torque relation)
affect the spin speed of the tail Ωt. The different spin speeds
can lead to different thrusts and affect the speed ratio. In gen-
eral, the torque stays a constant or decreases as the speed in-
creases. Therefore, we consider three cases: constant torque,
constant frequency (spin), and constant power. As shown in
Table 3, in the constant torque case, the spin of the tail is sim-
ply Ωt = 1/Ct and Ω ∞

t = 1/C∞
t , and their ratio CT

Ω
= c∞

t /ct

appeared in Eq. (38). For the constant-frequency case, the con-
stant spin speed is distributed to the tail and the head according
to the proportion of the total rotational resistance and that re-
sults in a ratio C f

Ω
= ch

c∞
h

c∞
h lh/lt+c∞

t
chlh/lt+ct

. Taking the advantage of the
linear relationship of the velocities and forces, the swimming
speed ratio α can be obtained by scaling of the results from
the constant torque case, i.e.,

αf =C f
Ω
/CT

Ω α =
1/C∞

t +1/C∞
h

1/Ct +1/Ch
α. (45)

Since the resistance coefficients in the pipe are always greater
than those in free space, it is easy to see that αf > α .

As show in Fig. 11, the overall profile is similar to the
constant torque case (Fig. 9). As the power is the product of
spin speed and torque, the case of constant power can be con-
sidered as an average of the constant-frequency and constant

torque cases. Therefore, for some swimmers, at least includ-
ing those with α > 1 in Fig. 9, the cost of transport in terms of
energy consumption per distance is lower in the pipe than that
in the free space.

Table 3. Influence of motor output characteristics on the spin speeds of
the tail and their ratio.

Constant Constant Constant
torque (T ) frequency ( f ) power (P)

Ω ∞
t

1
C∞

t

C∞
h

C∞
h +C∞

t

√
1

C∞
t

C∞
h

C∞
h +C∞

t

Ωt
1
Ct

Ch

Ch +Ct

√
1
Ct

Ch

Ch +Ct

CΩ = Ωt/Ω ∞
t

c∞
t

ct

ch

c∞
h

c∞
h lh/lt + c∞

t

chlh/lt + ct

√
c∞

t
ct

ch

c∞
h

c∞
h lh/lt + c∞

t

chlh/lt + ct
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Fig. 11. Speed ratio as a function of the tail length and head length.
Motor spin speed Ωsw is a constant 1. Head slenderness, lh/rh = 10 in
(a) and lh/rh = 100000 in (b), is kept a constant in respective subfigures.
Tail pitch λ = 2.5 and pipe radius R = 1/0.7.

4. Conclusion
In this study, we investigated the speedup of microswim-

mers in a confined environment — an infinitely long pipe. Us-
ing numerical simulation and robotic experiments, we showed
that a free swimmer can speedup in such confinement purely
due to hydrodynamic effects. By developing a reduced model
and analyzing the propulsion and drag forces on the head and
tail, we showed that the speed ratio is maximized by a mod-
erately long head and tail. While the speedup for a swimmer
with realistic geometry is small, theoretically, the speed ratio
has no upper limit when the lengths of the head and tail in-
crease with a certain proportion and head slenderness. Our re-
sults highlight the shielding effect on the interactions between
different parts of the swimmer. Such a mechanism might also
influence the locomotion in other confined environments. We
also showed that the virtual motor that generates a constant
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frequency could lead to a greater speedup compared with a
virtual motor that can generate a constant torque.

The bacterial tails are usually flexible. The helical shape
is formed due to the coupling between the driving torque and
force from the motor, internal elastic forces, and drag forces
from surrounding fluids.[34–36] Our study is limited to a fixed
shape to focus on the hydrodynamic effect due to the confine-
ment. How confinements affect the shape and locomotion per-
formance of realistic flexible tails will be studied in the future.
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Appendix A: The Stokeslets method in a pipe
First, here we recapitulate the Stokeslets method. Con-

sider a Stokes flow with a point force 𝑓 located at 𝑥f in the
region Ω . The governing equation of the velocity 𝑢 reads as

µ4𝑢= ∇p−𝑓δ (𝑥f), (A1)

∇ ·𝑢= 0, (A2)

where p is the pressure, and µ is the fluid viscosity. A Dirich-
let boundary condition is prescribed at the region boundary
∂Ω :

𝑢|∂Ω = 𝑢̃, (A3)

where 𝑢̃ is a given velocity.
The principle of the Stokeslets method is to place many

known solutions of point forces on the boundary or some-
where outside Ω , called Stokeslets 𝑆kn, then find the strength
of these Stokeslets that generate the desired boundary veloc-
ity. One of the most commonly used Stokeslets is the one in
three-dimensional infinite space:

𝑆(𝑥,𝑥f) =
1

8πµ

(
𝐼

r
+

(𝑥−𝑥f)(𝑥−𝑥f)

r3

)
, (A4)

where r = |𝑥−𝑥f| is the distance between the point force and
the velocity point.

In the method of Stokeslets, boundaries are covered by
n discrete points. Thus, there are 3n known velocities 𝑣 =

{𝑢(𝑥k), k = 1, . . . ,n, 𝑥k ∈ ∂Ω} and 3n unknowns 𝑔 =

{𝑓(𝑥k), k = 1, . . . ,n, 𝑥k ∈ ∂Ω}, and a system of 3n linear
equations that can be written in a matrix form𝑢(𝑥1)

. . .
𝑢(𝑥n)

=

𝑆kn(𝑥1,𝑥1) . . . 𝑆kn(𝑥1,𝑥n)
. . .

𝑆kn(𝑥n,𝑥1) . . . 𝑆kn(𝑥n,𝑥n)


𝑓(𝑥1)

. . .
𝑓(𝑥n)

 , (A5)

or

𝑣 =𝑀𝑔. (A6)

The matrix equations were solved using the generalized mini-
mal residual method (GMRES) in this study. Once the strength
𝑔 on the boundary is obtained, the velocity at an arbitrary lo-
cation 𝑥 can be calculated by

𝑢(𝑥) =
n

∑
k=1

𝑆kn(𝑥,𝑥k)𝑓(𝑥k). (A7)

Series solution of the Stokeslets in a pipe

Here we develop the Stokeslets in a pipe based on the se-
ries solution of a point force given by Liron and Shahar.[22]

The velocities at the pipe boundary and infinity are zero:{
𝑢b = 0,
𝑢∞ = 0.

(A8)

In cylindrical coordinates, the expression of the velocity at
𝑥u = (r,φ ,z) due to a point force located at 𝑥f = (b,0,0) in
the pipe (see Fig. A1) is

𝑢pipe(𝑥u)

=
∞

∑
k=−∞

(
sinkφ

coskφ

∞

∑
n=1

(
exp
(
−bn,kz

)
𝑃k,n(xn,k,𝑥f)

+exp
(
−cn,kz

)
𝑄k,n(yn,k,𝑥f)

))
,

(A9)

where 𝑢pipe = (uR,uφ ,uz) is the velocity vector, 𝑃k,n and 𝑄k,n

are complex functions of the modified Bessel functions of the
first kind Ik(s) and the second kind Kk(s), respectively. The
details can be find in Appendix B of Ref. [22]. In Eq. (A9),
bn,k = Im(xn,k), and cn,k = Im(yn,k), where Im(•) means the
imaginary part of •. xn,k and yn,k are the complex and imagi-
nary roots of Eq. (A6) in Ref. [22]:

sIk(s)(Ik−1(s)Ik+1(s))′−2(sIk(s))′Ik−1(s)Ik+1(s) = 0. (A10)

Since Ik(s) = I−k(s) when k ∈ Z, xn,−k = xn,k and yn,−k = yn,k.
In this study, the roots of Eq. (A10) in the ranges k = 0–1000
and n = 1–1000 were solved and stored.
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Fig. A1. Schematics of the Stokeslets in a pipe. A cylindrical coordinate
(r,φ ,z) is employed in the system. The a dotted line represents the axis of the
pipe, which coincides with the z. The point force is located at 𝑥f = (b,0,0).
The pipe is cut into three parts by two imaginary surfaces A1 and A2 (indi-
cated by dash-dotted lines) and are labeled as Ω1, Ω2 and Ω3. The regions
Ω2, and Ω3 are semi-infinite and the length of Ω1 is L.
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Next, we examine the convergence of the series solution and show that the converges for small z are too slow to be used
directly. There are two exponential decays in the series solution, and the associated coefficients are bn,kz and cn,kz. As shown
in Fig. A2, both these two coefficients increase monotonically with n and k, but the increase with k is approximately two times
faster than that with n. Therefore, we choose cutoff thresholds differently for k and n such that values of the last components bn,k

and cn,k are approximately the same to avoid the useless computation. As shown in Figs. A2(c) and A2(d), with the same cutoff
value Cth, the values for bn,k and cn,k are about the same. Then the infinite series become

𝑢pipe(𝑥u,Cth) =
Cth

∑
k=−Cth

(
sinkφ

coskφ

b(Cth−|k|)/2c

∑
n=1

(
exp
(
−bn,kz

)
𝑃k,n(xn,k,𝑥f)

+exp
(
−cn,kz

)
𝑄k,n(yn,k,𝑥f)

))
, (A11)

where bxc stands for the integer n satisfying n≤ x < n+1.
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Fig. A2. Convergence test of the Stokeslets in a pipe. (a) and (b) The contour plots of bn,k and cn,k as functions of n and k, respectively. (c) and (d) The
values of bn,k and cn,k as functions of the cutoff value Cth, respectively. (e) The error of the velocity at different positions and cutoff parameters. The solid
line, with a slope of −1.3648, is the best linear fit of the data. (f) The time required for computing the series expression. The solid line is the best linear fit
of the data, and its slope is 1.87.

A point force 𝑓 = (0,0,1) located at 𝑥f = (0.5R,0,0)
is selected in the test. We chose the velocity value from
Cref = 1000 as the reference solution and the relative error for
cutoff Cth is computed as

err(r,φ ,z,Cth)

=

√√√√
∑

i, j=1,2,3

(
ui

j (r,φ ,z,Cref)−ui
j (r,φ ,z,Cth)

ui
j (r,φ ,z,Cref)

)2

. (A12)

We vary the distance z and cutoff threshold Cth and the error
is shown in Fig. A2(e). By fitting straight lines in the semilog
plot, we find that the error follows the relationship

err = 0.87exp(−1.38zCth). (A13)

Therefore, for given err and z, the required Cth is

Cth =
ln(err/0.87)
−1.38z

. (A14)

The computational cost includes two parts: obtaining the
roots of Eq. (A10), and the summation in Eq. (A11). Since
the roots can be solved just once and stored, the only time-
consuming part of the computation is the summation. The av-
erage time to compute 1000 times of 𝑆pipe on a computer with
Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz is shown in
Fig. A2(f). We observed that the time increases near quadrat-
ically with Cth. If we set a goal for the maximal error as
err = 10−3, the computational time required for z = 0.01R and
z = 0.001R is 98 seconds and more than two hours, respec-
tively. As we need to cover the surface of the whole body with
the Stokeslets, such time consumption is unacceptable.
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Reconstruct the Stokeslets in pipe

In this section, an analytical–numerical combined method
is used to solve the small z problem raised above. As shown
in Fig. A1, the pipe is cut into three regions by two planes A1
and A2. The middle region contains the point force. The se-
ries expression converges rapidly in the other two regions and
does not require special treatment. The goal is to obtain the
Stokeslets 𝑆pipe numerically in the middle region Ω1.

As a tensor, 𝑆pipe can be obtained by the calculation of
three orthogonal velocity components for point forces along
the three axes. The boundary condition 𝑢̃ consists of three
parts, i.e., 𝑢b = 0 on the pipe wall, 𝑢A1 on the imaginary wall
A1, and 𝑢A2 on the imaginary wall A2. Since we can compute
the velocity on A1 and A2 accurately using the series expres-
sion, their values are known.

To remove the singularity in Ω1 and make the Stokes
equation satisfied everywhere, we subtract the velocity field
from a point force in free space and add it back later. The
residual velocity 𝑢i

res(𝑥,𝑥f) is

𝑢i
res(𝑥,𝑥f) = 𝑢i

pipe(𝑥,𝑥f)−𝑢i(𝑥,𝑥f), (A15)

where 𝑢i(𝑥,𝑥f) = 𝑆𝑓 is the singular velocity field due to a
unit point force 𝑒i(𝑥f) in free space (see Fig. A3(b)), The
residual velocity field cancels the velocity at the pipe surface.
The problem is reduced to finding the residual velocity field
numerically that satisfies the boundary condition 𝑢̃i

res(𝑥f) (see
Fig. A3(c)). The force distribution 𝑔res on the boundary for
this residual velocity field can be solved with the Stokeslets
method.

A1 A1 A1A2 A2 A2

uA uA

xf xf

Ω1 Ω1 Ω1

upipe~ u~ ures~
=upipe-u~ ~

(a) (b) (c)

ub/

Fig. A3. Schematics of the numerical method for reconstructing the Stokeslets in Ω1. (a) The Stokes problem in a finite pipe with a singular
unit point force 𝑓 located at 𝑥f and given boundary condition 𝑢̃pipe. The fluid field (Stokeslets) induced by 𝑓 can be decomposed into a
singular part (b) and a harmonic part (c). (b) The flow induced by the Stokeslets in free space 𝑆. The velocity on the imaginary boundary is 𝑢̃.
(c) The Stokes problem with the boundary condition 𝑢̃res = 𝑢̃pipe− 𝑢̃.
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res,z||. The relative error of upipe,z is computed as ||(uana

pipe,z−unum
pipe,z)/uana

pipe,z||.
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Table A1. Steps of reconstructing and using the Stokeslets in a pipe.

1. Preparation process:
(a) cut the infinite pipe into three regions,
(b) calculate the boundary velocity of the middle region using the series expression,
(c) decompose the velocity field into singular and harmonic parts (residual velocity),
(d) item solve the residual velocity and make the lookup table of strength 𝐺i

res.

2. Application process:
(a) interpolate 𝑔i

res(𝑥f) using 𝐺i
res,

(b) compute the velocity 𝑢 for the point of interest,
(c) add back the velocities from the Stokestlet 𝑆 to obtain 𝑀 .

A technical problem is to find proper pipe length L. We
examined the accuracy of the numerical method for different
pipe lengths and the number of force points on the bound-
ary. We placed 6000 random points on the boundary of the
finite pipe Ω1, and calculated the L2-norm error. As shown
in Fig. A4(a), the L2-norm error of the short pipe (L = R) is
significantly worse than other cases. This is because of the
complex velocity profile on the surfaces A1 and A2. Therefore,
we chose L = 2R in this study.

The strength 𝑔res for the residual field is a function of
radial location of the point force. We found that the error
increases significantly when b > 0.8 and becomes computa-
tional demanding (Fig. A4(b)). To speedup the numerical
method, we made a lookup table for 𝑔res. Particularly, we
computed 𝑔i

res(𝑥 f l) for a point at 𝑥 f l , where 𝑥 f l = (bl ,0,0).
bl = 0, . . . ,0.8, where l = 0,1, . . . ,800. The lookup table
contains all solved values of the point forces is denoted as
𝐺i

res = {𝑔i
res(𝑥 f l)}. Then a spline interpolation was employed

to calculate the strength 𝑔i
res(𝑥f) from the stored lookup ta-

ble 𝐺i
res. The Stokeslets 𝑆pipe can be reconstructed once the

residual velocity fields 𝑢i
res are computed by adding back the

Stokeslet in free space. A summation of the reconstruction
process is listed in Table A1.

The computational time increases linearly with the num-
ber of Stokeslets in the reconstruction process (see Fig. A4(c)).
In this study, we placed 9214 point forces on the boundary of
the finite pipe Ω1.

To test the accuracy of the reconstructed velocity field,
we placed the point force (0,0,1) at (0.5R,0,0) and calculated
the relative error of 𝑢res and 𝑢pipe (Fig. A4(d)). The relative
errors of 𝑢res are small in the range ||z||< 0.5 (light gray area
in Fig. A4(d)) but increase for large z due to the discretization
on the boundary. Contrary to the series expression, the recon-
structed Stokeslets in pipe have higher accuracy near the point
force. Therefore, the series expression of the Stokeslets was
used for ||z||> 0.5.

Resistance coefficients of an infintely long tail in free space

As shown in Fig. 6, we considered a double-helix moving
in free space and computed the resistance coefficients for axial
translation and rotation. Now we calculate the force density 𝑓t

using Lighthill’s slender body theory.[31] Without loss of gen-
erality, we set the viscosity of fluid µ ≡ 1 in this study. We
assume that the length of the double-helix lt is long enough
such that the force density is a constant in cylindrical coordi-
nates, i.e., 𝑓t = ( fr, fθ , fz), and the end effects are negligible.
The force on one of the helices in Cartesian coordinates can
be obtained by coordinates transformation

𝑓 = ( fx, fy, fz) =𝑅𝑓t( fr, fθ , fz), (A16)

where

𝑅(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 , (A17)

𝑅′(θ) =𝑅(θ +π). (A18)

Then the relation between the velocity 𝑢t and force 𝑓t at
𝑥0 = (rt1,0,0) can be computed as

𝑢t(𝑥0) =𝑀(θ1)𝑓t, (A19)

𝑀(θ1) =
𝐼− 𝑡t𝑡t

4π
+

S
2π

∫
r(θ)>δt

𝑆(𝑥0,𝑥1(θ))𝑅(θ)dθ

+
S

2π

∫
θ1

−θ1

𝑆(𝑥0,𝑥
′
1(θ))𝑅

′(θ)dθ , (A20)

where δt = ρt
√

e/2 is the “natural cutoff”,[31] θ1 = ltπ/λ ,
𝑟 = 𝑥1−𝑥0 (𝑟′ = 𝑥′1−𝑥0), 𝑥1 (𝑥′1) is an arbitrary point on
the 1st (2nd) helix, and 𝑆 is the Stokeslets (Oseen tensor)

𝑆(𝑥0,𝑥1) =
1

8π


1
r
+

rxrx

r3
rxry

r3
rxrz

r3

ryrx

r3
1
r
+

ryry

r3
ryrz

r3

rzrx

r3
rzry

r3
1
r
+

rzrz

r3

 , (A21)

here r = ||𝑟||.
The first term of Eq. (A20) is the local contribution of the

force to the velocity, taking into the account of the force sin-
gularity. Due to the symmetry, the axial motion generates no
radial forces and vice versa. Therefore, there are four zeros in
the 𝑀 matrix

𝑀(lt) =


crr 0 0
0 cθθ cθz

0 cθz czz +
S

λπ
ln(lt/rt)

 . (A22)
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Here, S ln(lt/rt)/(λπ) represents the nonlocal effects along
the axial direction.

The local contribution ci j of the 𝑀 matrix can
be integrated numerically. For instance, with rt = 1,
ρ = 0.1, and λ = 2.5, we obtained (crr,cθθ ,cθz,czz) =

(0.09416,0.51779,0.03036,1.16631).
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